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Abstract

This paper is concerned with a state constrained optimal control problem gov-
erned by a Moreau’s sweeping process with a controlled drift. The focus of this
work is on the Bellman approach for an infinite horizon problem. In particular,
we focus on the regularity of the value function and on the Hamilton-Jacobi-
Bellman equation it satisfies. We discuss a uniqueness result and we make a
comparison with standard state constrained optimal control problems to highlight
a regularizing effect that the sweeping process induces on the value function.

Keywords: State constraints, Infinite horizon problems, Sweeping processes,
Hamilton-Jacobi-Bellman equations, Optimal control

1 Introduction

In this paper, we are concerned with infinite horizon optimal control problems of
trajectories that satisfy a time-dependent state constraint and whose dynamics is
governed by a sweeping process with a controlled drift. Our goal is to characterize the
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value function of the associated problem as the unique solution to a Hamilton-Jacobi-
Bellman (HJB) equation in a viscosity sense.

To be more precise, given (τ, x) ∈ R × RN , a running cost ℓ : RN × Rm → R and
λ > 0, we are interested in the value function defined via the formula

ϑ(τ, x) := inf
α∈A

∫ ∞

τ

eλ(τ−t)ℓ(yατ,x(t), α(t))dt, (1)

where A stands for the set of Borel measurable functions α : R → A with values in a
nonempty set A ⊂ Rm and yατ,x(·) is an arc that solves the controlled sweeping process{

ẏ(t) ∈ f(y(t), α(t))−NC(t) (y(t)) , for a.e. t > τ,

y(τ) = x, with x ∈ C(τ).
(2)

Here f : RN × Rm → RN is the controlled part of the dynamics, the set-valued
map C : R ⇒ RN corresponds to the moving set (or time-dependent state constraint),
and NS(x) stands for the proximal normal cone to a set S ⊂ Rn at a point x ∈ S (see
definition below).

In the autonomous case, when C ≡ RN and under standard hypotheses on the
data, it is well known that ϑ(·) is a uniformly continuous function which can be
characterized as the unique viscosity solution to an HJB equation in that class of
functions; see, e.g., [2, Chapter 3] (see also [5] for an extension to the non-autonomous
setting). Furthermore, it is not difficult to see that the mapping τ 7→ ϑ(τ, x) =: ϑ(x)
is constant for any x ∈ RN fixed. Thus, in this particular setting, the HJB equation
takes the following form

λϑ(x) +H(x,∇ϑ(x)) = 0, x ∈ RN , (3)

where H(x, ζ) := sup{−⟨f(x, a), ζ⟩ − ℓ(x, a) : a ∈ A} for any x, ζ ∈ RN .
When the control problem is in the presence of state constraints (C ̸= RN ), a

constrained HJB equation can be associated with the value function as done in [22].
In this case, it is well-known that the value function satisfies (3) in the constrained
viscosity sense, meaning that ϑ(·) is a viscosity subsolution on int (C) and a viscosity
supersolution on C. However, it is troublesome to prove the uniqueness of the solution
to (3). The main difficulty comes from the fact that the HJB equation may admit
several solutions (in the constrained viscosity sense) if the behavior of the solution on
the boundary is not taken into account (see, e.g., the discussion in [6, 18]). Another
key point in the analysis is that the value function of a classical optimal control
problem with state constraints (no sweeping process involved) is likely to be merely
lower semicontinuous (see, for instance, [2, Example IV.5.3]) and undefined in some
regions of the state-constraint set; essentially because the viability domain may be
strictly contained in the state-constraint set. One of the main contributions of this
paper is to show that the sweeping process induces a regularizing effect on the value
function (it turns out to be a continuous function). This outcome is due to the fact
that trajectories are allowed to slide along the boundary of the state-constraint set.
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To the best of our knowledge, there are very few works on this topic in the setting
of controlled sweeping processes. For instance, in [21] the author deals with the Mayer
problem in an autonomous setting, while in [11], the authors study the minimum time
problem to reach a prescribed target. In both papers, suitable HJB inequalities are
introduced and used to characterize the value function as the unique solution in an
appropriate sense. It is worth mentioning that both works require the value function
to be continuous; this is essentially due to the dissipative character of the sweeping
processes, which does not allow to work with backward solutions in time.

The paper is organized as follows. After some mathematical preliminaries, in
Section 3, we prove the continuity of the value function and the existence of solutions
for the controlled sweeping process. Section 4 is dedicated to studying monotonicity
along trajectories and invariance results. Section 5 provides weakly decreasing princi-
ples for the controlled sweeping process. The paper ends with a discussion section and
an example illustrating the regularizing effect of the sweeping process on the value
function.

1.1 Main contributions of the paper

The main novelty of this work is that we are able, for the first time, to write down
proper Hamilton-Jacobi-Bellman inequalities, tested on the sub/super-differentials of
the value function. Such a result was achieved in [21, 11] just in the case in which
the constraint of the sweeping process does not dependent on time. Let us stress
that this is not a straightforward result since the sweeping process is a naturally
non-autonomous dynamics, merely upper semicontinuous with respect to time. Such
a feature makes the Hamiltonian of the problem discontinuous in time and space,
and makes the value function continuous, but not locally Lipschitz continuous with
respect to time. Furthermore, Corollary 5.1 and Theorem 5.2 provide an equivalence
result between different notions of solutions for the Hamilton-Jacobi-Bellman equation
related to an optimal control problem governed by a Sweeping Process dynamics. This
is a well-known fact when the Hamiltonian is continuous with respect to the state and
the time, but it is not true in general for Hamilton-Jacobi equations with discontinuous
dynamics. In this respect, the notion of viscosity solution presented in our main result
(see Theorem 3.3) agrees, under suitable conditions, with the notion introduced by Ishii
in [17] for boundary value problem with discontinuous Hamiltonian; see Remark 3.2.
We refer to [4] and the references therein for a recent up-to-date reference on the topic
of optimal control problems with discontinuities and Hamilton-Jacobi equations.

Moreover, by means of an appropriate Relaxation Theorem, we are able to prove
our Uniqueness Theorem without requiring any convexity assumptions on the dynam-
ics nor on the running cost, as, for instance, done in [16] for problems with standard
optimal control problems with state constraints or in [21, 11] for optimal control
problems of sweeping processes.
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2 Mathematical Preliminaries and Assumptions

Throughout this paper ⟨·, ·⟩ stands for the Euclidean inner product of RN with asso-
ciated norm ∥x∥ =

√
⟨x, x⟩. The closed unit ball will be denoted by B and B(x, r)

denotes the closed ball centered at x ∈ RN of radius r > 0.
Let S be a nonempty closed subset of RN and x ∈ RN . The distance of x to S,

denoted by distS(x), is defined by distS(x) := inf{∥x− y∥ : y ∈ S}.
The domain and the epigraph of an extended real-valued function f : RN → R ∪

{+∞} are defined, respectively, as

dom(f) := {x ∈ RN : f(x) < +∞} and epi(f) := {(x, λ) ∈ RN × R : f(x) ≤ λ}

Given a set S ⊂ RN and x ∈ S, we say that a vector η ∈ Rn belongs to the proximal
normal cone of S at x ∈ S, denoted by NS(x), if there is σ = σ(x, η) ≥ 0 such that
⟨η, y − x⟩ ≤ σ∥x− y∥2 for all y ∈ S. A vector η ∈ RN is called a proximal subgradient
of a lower semicontinuous function f : RN → R ∪ {+∞} at x ∈ dom(f) provided that

(η,−1) ∈ Nepi(f)(x, f(x)).

The set of all such η is the proximal subdifferential, which is denoted by ∂P f(x). We
refer to [10] for more details.

For any nonempty closed subset S of RN and any x ∈ S, one has

∂P distS(x) = NS(x) ∩ B. (4)

Let C ⊂ RN be a closed set and ρ > 0. We say that C is ρ uniformly prox-regular (see
[12] for a survey) if

⟨η, y − x⟩ ≤ 1

2ρ
∥η∥ ∥y − x∥2, ∀x, y ∈ C, ∀η ∈ NC(x).

The graph of a set-valued map C : R ⇒ RN , denoted by gr (C), is the collection
of all (τ, x) ∈ R× RN satisfying x ∈ C(τ).

2.1 Assumptions

Along this work, we assume that the data of the optimal control problem at hand
satisfy the following conditions, which are going to be referred in the sequel as Standing
Assumptions:

(H1) A is a nonempty and compact subset of Rm.
(H2) the time-dependent state-constraint sets satisfies

(H2.i) C(t) is a nonempty, closed and ρ uniformly prox-regular set of RN for any
t ∈ R.

(H2.ii) there exists κC > 0 such that

sup
x∈RN

|distC(t)(x)− distC(s)(x)| ≤ κC|t− s|, ∀t, s ∈ R.
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(H3) The dynamics satisfies
(H3.i) f(x, ·) is continuous on A for any fixed x ∈ RN .
(H3.ii) there exists κf > 0 such that

sup
a∈A

∥f(x1, a)− f(x2, a)∥ ≤ κf∥x1 − x2∥, ∀x1, x2 ∈ RN .

We observe that under (H3.i) and (H3.ii), the following assertion holds:
(H3.iii) there is βf > 0 such that

sup
a∈A

∥f(x, a)∥ ≤ βf (1 + ∥x∥), ∀x ∈ RN .

(H4) ℓ is continuous on RN ×A and satisfies in addition
(H4.i) ∃βℓ > 0 such that 0 ≤ ℓ(x, a) ≤ βℓ for any t ∈ R, x ∈ C(t) and a ∈ A.
(H4.ii) there exists κℓ > 0 such that

sup
a∈A

|ℓ(x1, a)− ℓ(x2, a)| ≤ κℓ∥x1 − x2∥, ∀x1, x2 ∈ RN .

The Standing Assumptions considered above are enough (but not sharp) to obtain
the regularity of the value function we have claimed in the introduction. This regularity
result, key for the analysis we do in the sequel, heavily relies on Thibault’s works on
perturbed sweeping processes (see, e.g., [14, 8]), which we summarize below.
Lemma 1. For any α ∈ A, τ ∈ R and x ∈ C(τ) fixed, the dynamical system (2) has
a unique absolutely continuous solution, which is denoted by yατ,x(·). Moreover,
(i) we have

∥yατ,x(t)− x∥ ≤
(
e2βf (t−τ) − 1

)(
1 +

κC
2βf

+ ∥x∥
)
, ∀t ≥ τ,

∥ẏατ,x(t)∥ ≤ κC + 2βf

(
1 +

κC
2βf

+ ∥x∥
)
e2βf (t−τ), for a.e. t ≥ τ

(ii) for any r > 0 and T > τ there is Kr
T ≥ 1, such that for any s ∈ [τ, T ] and α ∈ A

we have

max
t∈[s,T ]

∥yαs,x1
(t)− yαs,x2

(t)∥ ≤ Kr
T ∥x1 − x2∥, ∀x1, x2 ∈ C(s) ∩ B(0, r).

(iii) A mapping y(·) is a solution of (2) if and only if it is a solution of the
unconstrained differential inclusion{

ẏ(t) ∈ f(y(t), α(t))−m(y(t))∂P distC(t)(y(t)), for a.e. t > τ

y(τ) = x, with (τ, x) ∈ gr (C) ,
(5)

where m(x) := κC + βf (1 + ∥x∥) for any x ∈ RN .
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Proof. Let α ∈ A, τ ∈ R and x ∈ C(τ) be fixed. From (H2) and (H3), it is clear
that the moving set t 7→ C(t) and the drift (t, x) 7→ f(x, α(t)) satisfy the assumptions
of [14, Theorem 1] on I = [τ, T ]. Moreover, from [14, Theorem 1], we can deduce that
(2) has a unique absolutely continuous solution.
(i): By virtue of (H2.ii) and [14, Proposition 1], we obtain that

∥ẏατ,x(t)− f(yατ,x(t), α(t))∥ ≤ κC + ∥f(yατ,x(t), α(t))∥, for a.e. t ≥ τ.

Consequently, by (H3.iii), it follows that

∥ẏατ,x(t)∥ ≤ κC + 2βf (1 + ∥yατ,x(t)∥), for a.e. t ≥ τ.

Therefore, the result follows from Gronwall’s Lemma (see [10, Theorem 4.1.4]).
(ii): It is a direct consequence of [14, Proposition 2]. It is enough to note that the
Lipschitz constant in the proof of [14, Proposition 2] can be taken uniform with respect
to the control α. Indeed, it has an explicit expression that depends only on τ , T , r, ρ,
κf , βf and κC.
(iii): It follows from formula (4) and [23, Theorem 2.1].

Also, in order to avoid convexity assumptions on the dynamics and cost, we require
a Relaxation Theorem for trajectories of the controlled sweeping processes.
Lemma 2. Let τ ∈ R, x ∈ C(τ) and T > τ be fixed, and let y(·) be a solution of{

ẏ(t) ∈ co f(y(t), A)−NC(t) (y(t)) , for a.e. t ∈ [τ, T ],

y(τ) = x,

then, for any ϵ > 0 there is a solution yε(·) of{
ẏε(t) ∈ f(yε(t), A)−NC(t) (yε(t)) , for a.e. t ∈ [τ, T ],

yε(τ) = x,

such that maxt∈[τ,T ] ∥y(t)− yε(t)∥ < ϵ.

Proof. We observe that the result follows from an application of [9, Theorem 3.3],
which is stated in terms of measure-valued relaxed control. In particular, it is shown
a version of Lemma 2 in the case in which the state solution y(·) is solution of{

ẏ(t) ∈
∫
A
f(y(t), r)µ(t)(dr)−NC(t) (y(t)) , µ ∈ S, for a.e. t ∈ [τ, T ],

y(τ) = x, with x ∈ C(τ),

where S is the set of the Lebesgue measurable maps from [τ, T ] to the set r.p.m.(A)
of the Radon probability measures over A, that is

S := {µ : [τ, T ] → r.p.m.(A) Lebesgue measurable}.
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In view of the assumptions (H1) and (H3.i), the set co {f(x, a) : a ∈ A} is compact.
Hence, it follows from the arguments in [24, Theorem VI.3.2] that

co {f(x, a) : a ∈ A} =

{∫
A

f(x, r)µ(dr) : µ ∈ r.p.m.(A)

}
,

implying the equivalence between [9, Theorem 3.3] and Lemma 2.

Remark 2.1. Notice that the preceding lemma can also be applied for an aug-
mented dynamics, by replacing the mapping (x, a) 7→ f(x, a) with (t, x, a) 7→
(t, f(x, a), e−λtℓ(x, a)) and the moving set t 7→ C(t) with t 7→ R×C(t)× R.

3 Main Results

In the light of Lemma 1, the value function given in (1) is a well-defined finite function
on gr (C); note that ℓ is bounded along feasible arcs by (H4.i). In particular, we also
have that, as in standard optimal problems with state constraints, the value function
satisfies a dynamic programming principle.
Lemma 3. The mapping ϑ : gr (C) ⊂ R × RN → R defined in (1) satisfies for any
τ, h ≥ 0 and any x ∈ C(τ) that:

ϑ(τ, x) := inf
α∈A

{∫ τ+h

τ

eλ(τ−t)ℓ(yατ,x(t), α(t))dt+ e−λhϑ
(
τ + h, yατ,x(τ + h)

)}
.

Proof. It follows from similar arguments as those used in [2, Remark III.3.10].

3.1 Continuity of the value function

We can now prove one of our main results, which concerns the regularity of the value
function. We show that the value function of an optimal control problem of sweeping
processes over an infinite horizon is a bounded continuous function on gr (C).
Theorem 3.1. The mapping ϑ : gr (C) ⊂ R×RN → R defined in (1) is bounded and
continuous.

Proof. Let (τ̄ , x̄) ∈ gr (C), that is, x̄ ∈ C(τ̄). Thanks to (H4.i), it is easy to see that
|ϑ(τ̄ , x̄)| ≤ βℓ

λ , which implies that ϑ(·) is bounded on gr (C).
For the sake of the exposition, let us divide the proof of the continuity into several
steps:
Step 1: For (τ̄ , x̄) ∈ gr (C) and ε > 0, there exists h ∈ (0, 1) such that 6βℓ

(
1− e−λh

)
≤

λε and
B(x̄, κCh) ∩C(τ0) ̸= ∅, ∀τ0 ∈ [τ̄ − h, τ̄ + h].

Proof of Step 1: It follows from the continuity of t 7→ C(t) (see (H2.ii)), since we
have distC(t)(x̄) ≤ κC|t− τ̄ | for any t ∈ R.
Step 2: For (τ̄ , x̄) ∈ gr (C) and ε > 0, there is δ > 0 such that for any τ0 ∈ [τ̄ − h, τ̄+h]
and x0 ∈ B(x̄, κCh) ∩C(τ0) we have

|ϑ(τ0, x)− ϑ(τ0, x0)| ≤ ε, ∀x ∈ C(τ0) ∩ B(x0, δ). (6)
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Here h ∈ (0, 1) is as in Step 1.
Proof of Step 2: Take T > 1 + τ̄ such that 4βℓ ≤ ελeλ(T−τ̄−1) and define

r̄ := sup
α∈A

sup
τ∈[τ̄−1,τ̄+1]

sup
x∈B(x̄,κC)∩C(τ)

max
t∈[τ,T ]

∥yατ,x(t)∥,

which is finite by Lemma 1. Let K r̄
T > 0 be the constant given by Lemma 1 for r = r̄

and τ = τ̄ − 1. Let δ ∈ (0, (1− h)κC) small enough such that

κℓK
r̄
T

λ
δ
(
1− e−λ(T−τ̄+1)

)
≤ ε

4
. (7)

Take α0 ∈ A be an ε/4 optimal solution associated with ϑ(τ0, x0), that is,∫ ∞

τ0

eλ(τ0−t)ℓ(yα0
τ0,x0

(t), α0(t))dt−
ε

4
≤ ϑ(τ0, x0).

Take any x ∈ C(τ0)∩B(x0, δ) arbitrary. Since δ < (1− h)κC and h < 1, we have that
x ∈ B(x̄, κC) and it follows that for any α ∈ A we have

max
t∈[τ0,T ]

∥yατ0,x(t)∥ ≤ r̄.

Furthermore, in the light of (H4.ii), we have that for any α ∈ A and a.e. t ∈ [τ0, T ]∣∣ℓ(yατ0,x0
(t), α(t))− ℓ(yατ0,x(t), α(t))

∣∣ ≤ κℓ
∥∥yατ0,x0

(t)− yατ0,x(t)
∥∥ .

Consequently, combining Lemma 1 and the preceding estimate, we obtain that for any
α ∈ A, ∫ T

τ0

eλ(τ0−t)
∣∣ℓ(yατ0,x0

(t), α(t))− ℓ(yατ0,x(t), α(t))
∣∣ dt

≤ κℓK
r̄
T

λ
∥x0 − x∥

(
1− e−λ(T−τ0)

)
≤ ε

4
,

where we have used (7). Hence, the definition of α0 leads then to

ϑ(τ0, x)− ϑ(τ0, x0) ≤
∫ ∞

τ0

eλ(τ0−t)
(
ℓ(yα0

τ0,x(t), α0(t))− ℓ(yα0
τ0,x0

(t), α0(t))
)
dt+

ε

4
.

Moreover, thanks to the way T > τ0 has been taken, we also get

ϑ(τ0, x)− ϑ(τ0, x0) ≤
∫ T

τ0

eλ(τ0−t)
∣∣ℓ(yα0

τ0,x0
(t), α0(t))− ℓ(yα0

τ0,x(t), α0(t))
∣∣ dt+ 3ε

4
≤ ε.
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Finally, let α ∈ A be an ε/4 optimal solution for the problem associated to ϑ(τ0, x),
that is, ∫ ∞

τ0

eλ(τ0−t)ℓ(yατ0,x(t), α(t))dt−
ε

4
≤ ϑ(τ0, x).

Since α ∈ A is also feasible for the problem associated to ϑ(τ0, x0), it follows that

ϑ(τ0, x0)− ϑ(τ0, x) ≤
∫ ∞

τ0

eλ(τ0−t)
(
ℓ(yατ0,x0

(t), α(t))− ℓ(yατ0,x(t), α(t))
)
dt+

ε

4
.

Thus, repeating the same arguments as before, we get

ϑ(τ0, x0)− ϑ(τ0, x) ≤ ε,

which implies (6). The proof of Step 2 is then completed.
Step 3: Fix (τ, x) ∈ gr (C). Then, for any ε, h > 0 there is ᾱ ∈ A such that

|ϑ(τ, x)− ϑ(τ + h, yᾱτ,x(τ + h))| ≤ 2βℓ
λ

(
1− e−λh

)
+
ε

3
,

where ᾱ ∈ A is such that∫ τ+h

τ

eλ(τ−t)ℓ(yᾱτ,x(t), α(t))dt+ e−λhϑ
(
τ + h, yᾱτ,x(τ + h)

)
≤ ϑ(τ, x) +

ε

3
.

Proof of Step 3: By the Dynamic Programming Principle (Lemma 3), for any α ∈ A
we have

ϑ(τ, x) ≤
∫ τ+h

τ

eλ(τ−t)ℓ(yατ,x(t), α(t))dt+ e−λhϑ
(
τ + h, yατ,x(τ + h)

)
.

The claim follows from appropriate bounds on integrals and on the value function.
Step 4: Fix (τ̄ , x̄) ∈ gr (C). Then, for all ε > 0, there exists ρ > 0 such that if
τ ∈ (τ̄ − ρ, τ̄ + ρ) and ∥x− x̄∥ ≤ κCρ, then |ϑ(τ, x)− ϑ(τ̄ , x̄)| ≤ ε.
Proof of Step 4: Let ε > 0 and take h ∈ (0, 1) as in Step 1. Then, by virtue of Step 3,
for any τ ∈ (τ̄ − h, τ̄ ] there is α ∈ A such that

|ϑ(τ, x)− ϑ(τ̄ , x̄)| ≤ 2ε

3
+ |ϑ(τ̄ , yατ,x(τ̄))− ϑ(τ̄ , x̄)|.

Similarly, for any τ ∈ [τ̄ , τ̄ + h) there is ᾱ ∈ A such that

|ϑ(τ, x)− ϑ(τ̄ , x̄)| ≤ |ϑ(τ, x)− ϑ(τ, yᾱτ̄ ,x̄(τ))|+
2ε

3
.

Now, by Lemma 1, for any δ > 0 we can take ρ ∈ (0, h) such that if

τ ∈ (τ̄ − ρ, τ̄ + ρ) and ∥x− x̄∥ ≤ κCρ,
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then
• if τ ≤ τ̄ , we get ∥yατ,x(τ̄)− x̄∥ ≤ δ,
• if τ ≥ τ̄ , we get ∥yᾱτ̄ ,x̄(τ)− x∥ ≤ δ.
Consequently, by the way h ∈ (0, 1) has been taken, and letting δ > 0 be such that

(6) holds with ε
3 instead of ε, we obtain the following:

• if τ ∈ (τ̄ − ρ, τ̄ ] and ∥x− x̄∥ ≤ κCρ, then |ϑ(τ̄ , yατ,x(τ̄))− ϑ(τ̄ , x̄)| ≤ ε
3 ,

• if τ ∈ [τ̄ , τ̄ + ρ) and ∥x− x̄∥ ≤ κCρ, then |ϑ(τ, x)− ϑ(τ, yᾱτ̄ ,x̄(τ))| ≤ ε
3 ,

which proves the continuity of the value function.

3.2 Existence of optimal solutions

The following result establishes the existence of optimal controls for the problem (1).
To prove this result, we must impose a convexity assumption, which is standard in
optimal control theory. We emphasize that this convexity assumption will only be
required in for this results, and no longer required afterwards.

(H5) For all (τ, x) ∈ gr (C), the sets f(x,A) and ℓ(x,A) are closed and convex.
Theorem 3.2 (Existence of optimal solutions). In addition to the Standing Assump-
tions, suppose that λ > 2βf and (H5) holds. Then, for any (τ, x) ∈ gr (C) there is
α ∈ A such that

ϑ(τ, x) =

∫ +∞

τ

eλ(τ−t)ℓ(yατ,x(t), α(t))dt.

Proof. We adapt the ideas from [16, Proposition 3.2].
Fix (τ, x) ∈ gr (C). According to Theorem 3.1, the value function is bounded. Hence,
for all n ∈ N, there exists αn ∈ A such that

lim
n→+∞

∫ +∞

τ

eλ(τ−t)ℓ(yαn
τ,x(t), αn(t))dt = ϑ(τ, x).

By virtue of Lemma 1, we have the following bounds,

∥yαn
τ,x(t)∥ ≤ ∥x∥+

(
e2βf (t−τ) − 1

)(
1 +

κC
2βf

+ ∥x∥
)

for t ≥ τ ;

∥ẏαn
τ,x(t)∥ ≤ κC + 2βf

(
1 +

κC
2βf

+ ∥x∥
)
e2βf (t−τ) a.e. t ≥ τ ;

|ℓ(yαn
τ,x(t), αn(t)| ≤ βℓ for t ≥ τ,

Consider the measure dµ = eλ(τ−t)dt and let L1
µ := L1([τ,+∞); dµ) be the space of

integrable functions on [τ,+∞) for the measure dµ. Consequently, we denote by W 1,1
µ

the Sobolev space of functions in L1
µ which have their weak derivative also in L1

µ. Since
λ > 2βf , it follows that yαn

τ,x are uniformly bounded in W 1,1
µ . Hence, by virtue of [1,

Theorem 0.3.4] and the Dunford-Pettis Theorem, there exist a function y ∈W 1,1
µ and
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z ∈ L1
µ and subsequences (without relabeling) such that

yαn
τ,x converges uniformly to y on compact subsets of [0,+∞);

ẏαn
τ,x converges weakly to ẏ in L1

µ;

zn := ℓ(yαn
τ,x(·), αn(·)) converges weakly to z in L1

µ.

Then, by assertion (iii) of Lemma 1, hypothesis (H5) and the Convergence Theorem
(see [1, Theorem 1.4.1]), we obtain that{

ẏ(t) ∈ f(y(t), A)−m(y(t))∂P distC(t)(y(t)) a.e. t ≥ τ.

y(τ) = x, with x ∈ C(t).

Besides, the sets C(t) are closed, which implies that y(t) ∈ C(t) for all t ≥ τ .
Moreover, by virtue of (H3.ii), we obtain that

zn(t) ∈ ℓ(y(t), A) + κℓ∥y(t)− yαn
τ,x(t)∥B for a.e. t > τ.

Since zn converges weakly to z in L1
µ, we obtain that z(t) ∈ co (ℓ(y(t), A)) for a.e.

t > τ (see, e.g., [15, Proposition 2.3.31]). Then, by (H5), we obtain that

z(t) ∈ ℓ(y(t), A) for a.e. t > τ.

Hence, by the formula (4) and the Measurable Selection Theorem, there exists a
measurable function α ∈ A such that

ẏ(t) ∈ f(y(t), α(t))−NC(t) (y(t)) a.e. t ≥ τ ;

z(t) = ℓ(y(t), α(t)) a.e. t ≥ τ.

Therefore, y ≡ yατ,x. Finally, by weak convergence in L1
µ of zn to z, we obtain∫ +∞

τ

eλ(τ−t)ℓ(yατ,x(t), α(t))dt = lim
n→+∞

∫ +∞

τ

eλ(τ−t)ℓ(yαn
τ,x(t), αn(t))dt = ϑ(τ, x),

which proves that α is a minimizer of the problem.

3.3 Characterization of the value function

The main result of this paper concerns a characterization of the value function ϑ(·) as
the unique viscosity solution of the HJB equation

λϑ(τ, x)− ∂τϑ(τ, x) +H(x,∇xϑ(τ, x)) = 0, τ ∈ R, x ∈ int (C(τ)) , (8)

where
H(x, ζ) := max{−⟨ζ, f(x, a)⟩ − ℓ(x, a) : a ∈ A},
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that in addition satisfies some extra conditions on the boundary of the moving set;
the fact that additional information is actually mandatory for characterizing the
value function is discussed in A. To be more precise, our main result about this
characterization reads as follows.
Theorem 3.3. The mapping ϑ : gr (C) ⊂ R × RN → R defined in (1) is the unique
bounded and continuous function that solves (8) in the viscosity sense, which in
addition is a:

• viscosity supersolution in gr (C) of

λϑ(τ, x)− ∂τϑ(τ, x) +H(x,∇xϑ(τ, x)) +SC(τ, x,∇xϑ(τ, x)) = 0, (9)

• viscosity subsolution in gr (C) of

λϑ(τ, x)− ∂τϑ(τ, x) +H(x,∇xϑ(τ, x))−SC(τ, x,−∇xϑ(τ, x)) = 0, (10)

where
SC(τ, x, ζ) := sup

{
⟨ζ, v⟩ : v ∈ m(x)∂P distC(τ)(x)

}
. (11)

and m(·) is the function defined in Lemma 1.

Proof. This is a direct consequence of Theorem 5.1, Corollary 5.1 and Proposition 4.1,
which are stated and proven in the next sections.

Remark 3.1. In Theorem 3.3, the notion of viscosity supersolution in the closed set
gr (C) is the same one as used in problems with state constraints; see for instance [2,
Definition IV.5.6]. The notion of viscosity subsolution in the closed set gr (C) is the
corresponding modification, that is,

λϑ(τ, x)− ∂τg(τ, x) +H(x,∇xg(τ, x))−SC(τ, x,−∇xg(τ, x)) ≤ 0,

for any continuously differentiable function g : R× RN → R so that

ϑ− g attains a local maximum, relative to gr (C), at (τ, x).

Remark 3.2. Let us point out that these notions of viscosity super and sub solution
on the closed set gr (C) coincide, in our case, with the definitions introduced by Ishii in
[17] for the boundary value problem of the Dirichlet type. Indeed, let us set x = (τ, x)
and p = (θ, ζ), and consider the functions

F (x, u, p) = −λu− θ +H(x, ζ),

B∗(x, u, p) = F (x, u, p)−SC(τ, x,−ζ) and B∗(x, u, p) = F (x, u, p) +SC(τ, x, ζ).

From Lemma 4, it will follow that B∗ and B∗ are lower and upper semicontinu-
ous functions, respectively. Let us set Ω = int (gr (C)), and suppose Ω ̸= ∅ and that
gr (C) = Ω; this is not necessarily always the case as for example if int (gr (C)) = ∅.
Under these circumstances, we have that being a viscosity supersolution in gr (C) of
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(9) is the same as being a viscosity supersolution in the Ishii sense (see [17, page 107])
of the boundary value problem{

F (x, u,∇u) = 0, in Ω,

B∗(x, u,∇u) = 0 or F (x, u,∇u) = 0, on ∂Ω.

Similarly, the same happens for a viscosity subsolution in gr (C) of (10), however in
this case it corresponds to the boundary value problem{

F (x, u,∇u) = 0, in Ω,

B∗(x, u,∇u) = 0 or F (x, u,∇u) = 0, on ∂Ω.

Notice too that if for some function B, we have that B∗ and B∗ are its lower and upper
semicontinuous envelopes, respectively, then Theorem 3.3 can be stated as follows:

The mapping ϑ : gr (C) ⊂ R × RN → R is the unique bounded and continuous
viscosity solution in the Ishii (see e.g., [17]) of the boundary value problem{

F (x, u,∇u) = 0, in Ω,

B(x, u,∇u) = 0 or F (x, u,∇u) = 0, on ∂Ω.

Apparently, the existence of such function B can be justified, although it could be a
highly discontinuous function. For example, one can take

B(x, u, p) =

{
B∗(x, u, p) if p ∈ QN

B∗(x, u, p) otherwise.

The function SC plays a fundamental role in this work, and it is what provides the
information required for characterizing the value function as unique solution to an HJB
equation. As it may seem apparent, this function is seldom continuous. Nonetheless,
the continuity of this function is not mandatory for the technique we use to prove
Theorem 3.3, and we only require upper semicontinuous in the first two arguments,
which under the Standing Assumptions holds true as proved below.
Lemma 4. The mapping SC : R× RN × RN → R is upper semicontinuous.

Proof. From [8, Proposition 4.1] it follows that the mapping

(τ, x) 7→ Υ(τ, x) := m(x)∂P distC(τ)(x),

has closed graph on gr (C). Since ∂P distC(τ)(x) is a closed subset of B (thanks to (4)),
it follows that the mapping Υ is upper semicontinuous; see for instance [1, Theorem
1.1.1]. Therefore, from the Maximum Theorem (see e.g., [1, Theorem 1.2.5]) it follows
that for any given ζ ∈ RN , the mapping (τ, x) 7→ SC(τ, x, ζ) is upper semicontinuous.
The conclusion follows then from noticing that for any x, ζ, ζ̄ ∈ RN and τ ∈ R we have.

SC(τ, x, ζ) ≤ SC(τ, x, ζ̄) +m(x)∥ζ − ζ̄∥.
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In order to prove our main result, we require several intermediate steps, many of
them based on non-smooth analysis techniques, in particular, on invariance principles
as in [16], which we develop in the next sections.

4 Monotonicity along trajectories and invariance

Let us start by studying monotonicity properties of the value function along trajecto-
ries and their relation with invariance principles. This is a key step for later providing
a characterization of the value function in terms of an HJB equation as mentioned
before.
Definition 4.1. We say that φ : gr (C) ⊂ R× RN → R is
1. nearly weakly decreasing for the optimal control problem of sweeping process if

for any (τ, x) ∈ gr (C), T ≥ τ and ε > 0 there is ᾱ ∈ A such that

φ(τ, x)+ε ≥
∫ T

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt+ eλ(τ−T )φ
(
T, yᾱτ,x(T )

)
.

2. strongly increasing for the optimal control problem of sweeping process if for any
(τ, x) ∈ gr (C), T ≥ τ and any α ∈ A such that

φ(τ, x) ≤
∫ T

τ

eλ(τ−t)ℓ(yατ,x(t), α(t))dt+ eλ(τ−T )φ
(
T, yατ,x(T )

)
.

In the light of the Dynamic Programming Principle (Lemma 3), it follows that the
value function defined in (1) is both, nearly weakly decreasing and strongly increasing
for the optimal control problem of sweeping processes. The following lemma shows that
any function φ : gr (C) ⊂ R × RN → R that is nearly weakly decreasing or strongly
increasing in the sense of Definition 4.1 can be compared with respect to the value
function.
Lemma 5. Let φ : gr (C) ⊂ R× RN → R be a bounded function.
1. If φ is nearly weakly decreasing for the optimal control problem of sweeping

processes, then ϑ(τ, x) ≤ φ(τ, x) for all (τ, x) ∈ gr (C).
2. If φ is strongly increasing for the optimal control problem of sweeping processes,

then ϑ(τ, x) ≥ φ(τ, x) for all (τ, x) ∈ gr (C).

Proof. First of all, note that for any (τ, x) ∈ gr (C), α ∈ A and T ≥ τ we have that(
T, yατ,x(T )

)
∈ gr (C) and thus, since φ is bounded on gr (C), it follows that

lim
T→+∞

eλ(τ−T )φ
(
T, yατ,x(T )

)
= 0. (12)

On the one hand, suppose that φ is nearly weakly decreasing for the optimal control
problem of sweeping processes. Take (τ, x) ∈ gr (C) and ε > 0 arbitrary, and let T ≥ τ
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be such that βℓe
λ(τ−T ) ≤ ελ. Take ᾱ ∈ A given by Definition 4.1. Then

φ(τ, x)+ε ≥
∫ T

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt+ eλ(τ−T )φ
(
T, yᾱτ,x(T )

)
.

Notice that

ε ≥ βℓ
λ
eλ(τ−T ) ≥

∫ ∞

T

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt,

which implies that

φ(τ, x)+2ε ≥
∫ +∞

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt+ eλ(τ−T )φ
(
T, yᾱτ,x(T )

)
.

Therefore, by the definition of the value function we obtain the inequality

eλ(τ−T )φ
(
T, yᾱτ,x(T )

)
+ϑ(τ, x) ≤ φ(τ, x) + 2ε.

From (12), letting T → +∞ we get ϑ(τ, x) ≤ φ(τ, x)+2ε, and since ε > 0 is arbitrary,
we conclude.

On the other hand, suppose now that φ is strongly increasing for the optimal
control problem of sweeping processes. Take (τ, x) ∈ gr (C) and ᾱ ∈ A arbitrary. By
definition, it follows that

φ(τ, x) ≤
∫ T

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t)) + eλ(τ−T )φ
(
T, yᾱτ,x(T )

)
for all T ≥ τ.

Then by (12), letting T → +∞ and using the definition of the value function, we
conclude the proof.

In view of the previous results, we can state an intermediate characterization of
the value function in terms of Definition 4.1.
Proposition 4.1. The value function ϑ given by (1) is the unique bounded func-
tion defined on gr (C) that is nearly weakly decreasing and strongly increasing for the
optimal control problem of sweeping process at the same time.

4.1 Invariance with an unbounded dynamics

We now study some invariance principles and show how these are related to mono-
tonicity properties of value functions. Let us begin by considering first the case with
an unbounded dynamics. Let us set P = R× R× RN × R× R and denote the corre-
sponding variable p = (σ, τ, x, z, γ). For a given function φ : gr (C) ⊂ R × RN → R
we define

Ep(φ) :=
{
p ∈ P : e−λσφ(τ, x) + z ≤ γ

}
.

Let us consider the differential inclusion

ṗ(t) ∈ F(p(t)), a.e. on [0,+∞), p(0) = p0, (13)
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where F : P ⇒ P is the set-valued map given by

F(p) = {(1, 1)} ×
(
co
{(
f(x, a), e−λσℓ(x, a)

)
: a ∈ A

}
−NC(τ) (x)

)
× {0}×{0}.

Note that
dom(F) =

{
(σ, τ, x, z, γ) ∈ P : NC(τ) (x) ̸= ∅

}
.

But, NC(τ) (x) ̸= ∅ if and only if (τ, x) ∈ gr (C). Therefore, any absolutely continuous
trajectory t 7→ p(t) = (σ(t), τ(t), y(t), z(t), γ(t)) solution of (13) must satisfy as well
y(t) ∈ C(τ(t)) for any t ≥ 0.

We can now provide a link between the weak decreasing property for the optimal
control problem of sweeping processes and a weak invariance principle for (Ep(φ),F).
In our setting (Ep(φ),F) is said to be weakly invariant if for any p0 ∈ Ep(φ), there is
an absolutely continuous trajectory t 7→ p(t), solution of (13) such that p(t) ∈ Ep(φ)
for any t ≥ 0
Proposition 4.2. Let φ : gr (C) ⊂ R× RN → R be a given continuous function and
suppose that (Ep(φ),F) is weakly invariant. Then, φ is nearly weakly decreasing for
the optimal control problem of sweeping processes.

Proof. Let (τ0, x0) ∈ gr (C), ε > 0 and T ≥ τ0. Set h = T − τ0, and define
p0 = (0, τ0, x0, 0, φ(τ0, x0)). It is clear that p0 ∈ Ep(φ). Thus, since (Ep(φ),F)
is weakly invariant, we can find an absolutely continuous trajectory t 7→ p(t) =
(σ(t), τ(t), y(t), z(t), γ(t)) solution of (13) such that

e−λσ(t)φ(τ(t), y(t)) + z(t) ≤ γ(t), ∀t ≥ 0.

By the definition of F we get that σ(t) = t, τ(t) = t+ τ0 and γ(t) = φ(τ0, x0) for any
t ≥ 0. Moreover, it follows that for a.e. t ∈ [0,+∞) one has(

ẏ(t)
ż(t)

)
∈ co

{(
f(y(t), a)

e−λtℓ(y(t), a)

)
: a ∈ A

}
−
(
NC(t+τ0) (y(t))× {0}

)
.

By the Relaxation Theorem (see Lemma 2 and Remark 2.1), there is a sequence
{(yn, zn)} that converges uniformly on [0, h] to (y, z), with (yn(0), zn(0)) = (x0, 0) and
such that for a.e. t ∈ [0, h](

ẏn(t)
żn(t)

)
∈
{(

f(yn(t), a)
e−λtℓ(yn(t), a)

)
: a ∈ A

}
−
(
NC(t+τ0) (yn(t))× {0}

)
.

By [20, Theorem 14.26], we have that t 7→ NC(t+τ0) (yn(t)) is measurable, and then
by [20, Theorem 14.16] we can find some measurable map t 7→ (αn(t), ηn(t)) with
αn(t) ∈ A and ηn(t) ∈ NC(t+τ0) (yn(t)) defined a.e. on [0, h] such that

ẏn(t) = f(yn(t), αn(t))− ηn(t) and żn(t) = e−λtℓ(yn(t), αn(t)), a.e. on [0, h].

Consider ȳn : [τ0,+∞) → RN and ᾱn : [τ0,+∞) → A, given by
• ȳn(t+ τ0) = yn(t) and ᾱn(t+ τ0) = αn(t) if t ∈ [0, h];
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• ȳn(t+ τ0) = yᾱT,yn(T )(t) and ᾱn(t+ τ0) = ᾱ(t) if t > h,

where ᾱ(t) ≡ a for some a ∈ A arbitrary. It is clear that ȳn is a solution of (2)
with initial condition ȳn(τ0) = x0 and related to the control t 7→ ᾱn(t). However, this
controlled sweeping process has a unique solution (Lemma 1). Therefore, ȳn = yᾱn

τ0,x0

and since zn(0) = 0, we get

zn(h) =

∫ T

τ0

eλ(τ0−s)ℓ(yᾱn
τ0,x0

(s), ᾱn(s))ds.

Take now n ∈ N large enough such that

eλ(τ0−T )φ(T, yᾱn
τ0,x0

(T )) ≤ eλ(τ0−T )φ(T, y(h)) +
ε

2
and zn(h) ≤ z(h) +

ε

2
.

This can be done since yᾱn
τ0,x0

(T ) = yn(h) → y(h) and we are also assuming that φ is
continuous function. It follows then

eλ(τ0−T )φ(T, yᾱn
τ0,x0

(T )) +

T∫
τ0

eλ(τ0−s)ℓ(yᾱn
τ0,x0

(s), ᾱn(s))ds ≤ φ(τ0, x0) + ε.

This completes the proof.

In a similar way, we can establish a link between strong increasingness for the
optimal control problem of sweeping processes and a strong invariance principle. Given
a function φ : gr (C) ⊂ R× RN → R we define

Hy(φ) :=
{
p ∈ P : e−λσφ(τ, x) + z ≥ γ

}
.

We say that (Hy(φ),F) is strongly invariant if for any p0 ∈ Hy(φ) and any absolutely
continuous trajectory t 7→ p(t) solution of (13) we have p(t) ∈ Hy(φ) for any t ≥ 0.
Proposition 4.3. Let φ : gr (C) ⊂ R × RN → R be a given function and suppose
that (Hy(φ),F) is strongly invariant. Then, φ is strongly increasing for the optimal
control problem of sweeping processes.

Proof. Let (τ0, x0) ∈ gr (C) and α ∈ A. Consider the absolutely continuous curve
defined for t ≥ 0 given by

pα(t) :=

(
t, t+ τ0, y

α
τ0,x0

(t+ τ0),

∫ t+τ0

τ0

eλ(τ0−s)ℓ(yατ0,x0
(s), α(s))ds, φ(τ0, x0)

)
.

Clearly, t 7→ pα(t) is a solution of (13) with p0 = (0, τ0, x0, 0, φ(τ0, x0)). Also,
p0 ∈ Hy(φ) and thus, since (Hy(φ),F) is strongly invariant, we must have that the
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trajectory pα(t) ∈ Hy(φ) for any t ≥ 0. In other words, for any t ≥ 0 we have

eλ(τ0−t−τ0)φ(t+ τ0, y
α
τ0,x0

(t+ τ0)) +

t+τ0∫
τ0

eλ(τ0−s)ℓ(yατ0,x0
(s), α(s))ds ≥ φ(τ0, x0).

But, since α ∈ A is arbitrary, this last inequality is equivalent to say that φ
is strongly increasing for the optimal control problem of sweeping processes, so the
conclusion follows.

4.2 Invariance with a bounded dynamics

Now, in order to characterize invariance principles in terms of variational inequalities,
and later on in terms of HJB inequalities, it is more convenient to work with an
unconstrained and bounded dynamics. Indeed, from Lemma 1, a mapping y(·) solves
(2) if and only if it solves the unconstrained and bounded dynamics (5). Consequently,
we can get the following variant of Proposition 4.2 and Proposition 4.3 for the set-
valued map Γ : P ⇒ P given by

Γ(p) = {(1, 1)}×
(
co
{(
f(x, a), e−λσℓ(x, a)

)
: a ∈ A

}
−m(x)∂P distC(τ)(x)

)
×{0}×{0}

and the differential inclusion

ṗ(t) ∈ Γ(p(t)), a.e. on [0,+∞), p(0) = p. (14)

Proposition 4.4. Let φ : gr (C) ⊂ R× RN → R be a given function.
1. Suppose that φ is continuous and (Ep(φ),Γ) is weakly invariant, that is, for any

p ∈ Ep(φ), there is an absolutely continuous trajectory t 7→ p(t), solution of
(14) such that p(t) ∈ Ep(φ) for any t ≥ 0. Then, φ is nearly weakly decreasing
for the optimal control problem of the sweeping process.

2. Suppose that (Hy(φ),Γ) is strongly invariant, that is, for any p ∈ Hy(φ) and
any absolutely continuous trajectory t 7→ p(t) solution of (14) we have that p(t) ∈
Hy(φ) for any t ≥ 0. Then, φ is strongly increasing for the optimal control
problem of the sweeping process.

Proof. It follows from Proposition 4.2 and Proposition 4.3, combined with the fact
that (13) is equivalent, as a dynamical system, to (14). The latter being a direct
consequence of formula (4) and [23, Theorem 3.1].

4.3 Characterization of Invariance Principles

Let us now focus on some characterizations of the invariance principles discussed in
the preceding part. For the sake of clarity, let us write the multifunction Γ as follows

Γ(p) = ΓC(p)− ΓD(p),
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where
ΓC(p) := co

{(
1, 1, f(x, a), e−λσℓ(x, a), 0

)
: a ∈ A

}
and

ΓD(p) :=
{
(0, 0,m(x)ξ, 0, 0) : ξ ∈ ∂P distC(τ)(x)

}
.

It is clear that under the standing assumptions, the set-valued map p 7→ ΓC(p) is
continuous, with nonempty compact convex images. Moreover, as pointed out in the
proof of Lemma 4, it also holds that the set-valued map p 7→ ΓD(p) is upper semi-
continuous; see also [7, Theorem 5.8]. It is not difficult to see that ΓD has nonempty
compact convex images, and has linear growth with respect to the p variable.

Let us now show a Hamiltonian strong invariance characterization for the initial
value problem (14).
Theorem 4.1. Let K ⊂ R× gr (C)×R×R be a nonempty closed set. Then (K,Γ) is
strongly invariant for (14) if and only if for every p ∈ K, we have

min
v∈−ΓD(p)

⟨v, η⟩+ max
v∈ΓC(p)

⟨v, η⟩ ≤ 0, ∀ η ∈ NK (p) .

Proof. (Necessity). Fix p0 = (σ0, τ0, x0, z0, γ0) ∈ K, η0 ∈ NK (p0). Take v0 ∈ ΓC(p0)
such that

max
v∈ΓC(p0)

⟨v, η0⟩ = ⟨v0, η0⟩.

Since maxv∈S⟨v, η0⟩ = maxv∈co(S)⟨v, η0⟩, for any nonempty compact set S ⊂ P By
definition of ΓC , we may assume that there is a0 ∈ A such that

v0 =
(
1, 1, f(x0, a0), e

−λσ0ℓ(x0, a0), 0
)
.

Let us consider the mapping ϕ : P → P given by

ϕ(p) :=
(
1, 1, f(x, a0), e

−λσℓ(x, a0), 0
)
, ∀p = (σ, τ, x, z, γ).

Clearly, ϕ is a continuous selection of ΓC such that ϕ(p0) = v0. Since, for any p =
(σ, τ, x, z, γ) ∈ K, the Cauchy problem

ṗ(t) ∈ −ΓD(p(t)) + ϕ(p(t)), a.e. on [0 +∞), p(0) = p. (15)

admits solutions, it follows from the strong invariance of K with respect to (14) that K
is also weakly invariant with respect to (15). Thus, from the classical Weak Invariance
Theorem (e.g., [10, Theorem 4.2.10]), we obtain that for all p = (σ, τ, x, z, γ) ∈ K

min
v∈−ΓD(p)

⟨v, η⟩+ ⟨ϕ(p), η⟩ ≤ 0, ∀ η ∈ NK (p).

In particular, by taking p = p0 and η = η0 in the latter inequality, we obtain

min
v∈−ΓD(p0)

⟨v, η⟩+ max
v∈ΓC(p0)

⟨v, η0⟩ ≤ 0.
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Since p0 = (σ0, τ0, x0, z0, γ0) ∈ K and η0 ∈ NK (p0) were arbitrarily chosen, the first
part of the proof is complete.

(Sufficiency). Take p0 = (σ0, τ0, x0, z0, γ0) ∈ K and any T > 0 and a solution
p : [0, T ] → P of (14) with initial condition p(0) = p0. We aim at proving that
p(t) = (σ(t), τ(t), y(t), z(t), γ(t)) ∈ K for each t ∈ [0, T ].

To this aim, observe first that the structure of the right hand side of (14) implies
that σ(t) = σ0+t, τ(t) = τ0+t and γ(t) = γ0. Moreover, through standard measurable
selection theorems (see, e.g., [1, Proposition 1.4 and Theorem 1.1]), the existence of
some measurable functions g : [0, T ] → P and ξ : [0, T ] → RN such that

ξ(t) ∈ ∂P distC(τ(t))(y(t)) and g(t) ∈ ΓC(p(t)), for a.e. t ∈ [0, T ],

and for which
ṗ(t) = (0, 0,−m(y(t))ξ(t), 0, 0) + g(t).

In particular, since (τ0, x0) ∈ gr (C), we have that y(0) = x0 ∈ C(τ0). Besides,

ẏ(t) ∈ co (f(y(t), A))−m(y(t))ξ(t), for a.e. t ∈ [0, T ],

it follows that y(t) ∈ C(τ0 + t) for any t ∈ [0, T ]; see for instance [23].
Using the notation p = (σ, τ, x, z, γ), let us define the set

Sρ :=
{
(t,p) ∈ [0, T ]×P : dC(τ(t))(x) < ρ, dC(τ)(y(t)) < ρ, dC(τ)(x) <

ρ

2

}
,

and the set-valued map G̃ : Sρ ⇒ P given by

G̃(t,p) := {v ∈ Γ(p) : ⟨ṗ(t)−v,p(t)−p⟩ ≤ C(t, x)∥p(t)−p∥2+2m(x)|τ(t)−τ |}, (16)

where

C(t, x) := κf + e−λσ0κℓ + λβℓ +m(y(t))
8

ρ
+m(x)

16

ρ
+ βf .

Notice that (t,p(t)) ∈ Sρ for any t ∈ [0, T ]. In particular, Sρ ̸= ∅. Finally, let us define
the multifunction F̃ : [0, T ] ×P ⇒ P, which is an extension of G̃ to the whole space
[0, T ]×P, as follows:

F̃ (t,p) =

{
G̃(t,p) if (t,p) ∈ Sρ,

co {Γ(p), {0}} otherwise.

We claim that the set-valued map F̃ has the following properties:
(i) ∅ ≠ F̃ (t,p), for all p ∈ P and a.e. t ∈ [0, T ];
(ii) min

v∈F̃ (t,p)
⟨v, η⟩ ≤ 0 for all p ∈ K, η ∈ NK (p) and a.e. t ∈ [0, T ];

(iii) F̃ has compact and convex values and is almost upper semicontinuous on [0, T ]×
RN , i.e., for every closed interval I ⊂ [0, T ] and each ε > 0, there exists a closed

set Nε ⊂ I with Lebesgue measure µ(I \ Nε) < ε and so that the graph gr
(
F̃
)

is closed in Nε × RN × RN .
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In order to see the nonemptyness of F̃ , we establish first some inequalities. Fix
t ∈ [0, T ] such that ṗ(t) exists and take p = (σ, τ, x, z, γ) ∈ P such that (t,p) ∈ Sρ.
By virtue of [1, Proposition 1.1.6], the Lipschitz continuity of x 7→ f(x, a) and of the
map x 7→ ℓ(x, a), there exists ḡt ∈ ΓC(p) such that

∥g(t)− ḡt∥ ≤
(
κf + e−λσ0κℓ + λβℓ

)
∥p(t)− p∥. (17)

Let us now observe that, in view of the prox-regularity assumption (H2.i), the sets
∂P distC(τ(t))(y(t)) and ∂P distC(τ)(x) are both non-empty. On the one hand, for any
ξ(t) ∈ ∂P distC(τ(t))(y(t)), from [7, Theorem 2.14] we have that

⟨ξ(t), x− y(t)⟩ ≤ distC(τ(t))(x) +
8

ρ
∥y(t)− x∥2, (18)

and that for any ξ ∈ ∂P distC(τ)(x), one has that

⟨ξ, y(t)− x⟩ ≤ distC(τ)(y(t))− distC(τ)(x) +
16

ρ
∥y(t)− x∥2. (19)

Define v̄ = (0, 0,−m(x)ξ, 0, 0) + ḡt, where ξ is an arbitrary element of the set
∂P distC(τ)(x) (the latter set being non-empty). Then, by taking into account (17),
(18) and (19), we obtain

⟨ṗ(t)− v̄t,p(t)− p⟩

= ⟨g(t)− ḡt,p(t)− p⟩ −m(y(t))⟨ξ(t), y(t)− x⟩+m(x)⟨ξ, y(t)− x⟩

= ⟨g(t)− ḡ,p(t)− p⟩+m(y(t))⟨ξ(t), x− y(t)⟩+m(x)⟨ξ, y(t)− x⟩

≤ (κf + e−λσ0κℓ + λβℓ)∥p(t)− p∥2 +m(y(t))
8

ρ
∥y(t)− x∥2 +m(x)

16

ρ
∥y(t)− x∥2

+m(y(t))(distC(τ)(x)− distC(τ(t))(y(t))) +m(x)(distC(τ)(y(t))− distC(τ)(x))

= (κf + e−λσ0κℓ + λβℓ)∥p(t)− p∥2 +m(y(t))
8

ρ
∥y(t)− x∥2 +m(x)

16

ρ
∥y(t)− x∥2

+ (m(y(t))−m(x))(distC(τ)(x)− distC(τ(t))(y(t)))

+m(x)(distC(τ)(y(t))− distC(τ(t))(y(t)) + distC(τ)(x)− distC(τ)(x))

≤ (κf + e−λσ0κℓ + λβℓ)∥p(t)− p∥2 +m(y(t))
8

ρ
∥y(t)− x∥2 +m(x)

16

ρ
∥y(t)− x∥2

+ βf∥y(t)− x∥2 + 2m(x)|τ(t)− τ |

= C(t, x)∥p(t)− p∥2 + 2m(x)|τ(t)− τ |.

Thus, v̄ ∈ F̃ (t,p), which shows (i).
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We observe that in the above argument the only condition imposed on ξ was
ξ ∈ ∂P distC(τ)(x). Then, given any p ∈ K and η ∈ NK (p), if (t,p) ̸∈ Sρ, then

0 ∈ F̃ (t,p) and so
min

v∈F̃ (t,p)
⟨v, η⟩ ≤ 0.

Otherwise, we can choose ξ̄ ∈ ∂P distC(τ)(x) such that

min
v∈ΓD(p)

⟨v, η⟩ = ⟨(0, 0,−m(x)ξ̄, 0, 0), η⟩.

Therefore, by taking v̄t =
(
0, 0,−m(x)ξ̄, 0, 0

)
+ ḡt ∈ F̃ (t,p), we have

min
v∈F̃ (t,p)

⟨v, η⟩ ≤ ⟨v̄t, η⟩ ≤ min
v∈−ΓD(p)

⟨v, η⟩+ max
v∈ΓC(p)

⟨v, η⟩ ≤ 0,

where the last inequality holds true by hypothesis. Thus, we have proved (ii). We point
out that (iii) is easily checked, so we left the details to the reader.
Next, by a known weak flow invariance result (see, e.g., [13, Theorem 1]), the Cauchy
problem {

ṗ(t) ∈ F̃ (t,p(t)),

p(0) = p0

admits a solution p̃ : [0, T̃ ] → P such that p̃(t) ∈ K for all t ∈ [0, T̃ ]. Set T ′ =
min{T, T̃}. We claim that p(t) = p̃(t) for all t ∈ [τ0, T

′]. Indeed, we first observe that
τ(t) = τ̃(t) since τ(0) = τ̃(0) and τ̇(t) = ˙̃τ(t) ≡ 1 a.e. t ∈ [0, T ′]. Furthermore, since p̃
is a F̃ -trajectory, by taking v = ˙̃p(t) and p = p̃(t) in (16), we obtain for a.e. t ∈ [0, T ′],

⟨ṗ(t)− ˙̃p(t),p(t)− p̃(t)⟩ ≤ C(t, x̃(t))∥p(t)− p̃(t)∥2.

Since p(0) = p̃(0) = p0, it follows from Gronwall’s Lemma that p(t) = p̃(t) in [0, T ′].
If T ′ < T , we can repeat the same arguments starting from the point p(T ′) in place of
p0. This proves that p(t) ∈ K for all t ∈ [0, T ]. Since the trajectory p(·) was arbitrarily
chosen, the proof is complete.

In a similar note, we can prove a characterization for the weak invariance.
Theorem 4.2. Let K ⊂ R × gr (C) × R × R be a nonempty closed set. Then, (K,Γ)
is weakly invariant for (14) if and only if for every p0 ∈ K, we have

min
v∈−ΓD(p0)

⟨v, η⟩+ min
v∈ΓC(p0)

⟨v, η⟩ ≤ 0, ∀η ∈ NK (p0) . (20)

Proof. This is a straightforward consequence of [10, theorem 4.2.4] and the fact that

min
v∈−ΓD(p0)

⟨v, η⟩+ min
v∈ΓC(p0)

⟨v, η⟩ = min
v∈Γ(p0)

⟨v, η⟩
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5 Hamiltonian characterization of monotonicity

This section aims at providing some characterizations in terms of HJB inequalities for a
function to be nearly weakly decreasing and strongly increasing for the optimal control
problem of sweeping processes. These characterizations will be proven by means of the
proximal sub- and superdifferential. First we recall the notion of viscosity subgradient.
Definition 5.1. Let ψ : Ω ⊂ Rk → R be an l.s.c. function. A vector ξ ∈ Rk is
called a viscosity subgradient of ψ at x ∈ Ω if and only if there exists a continuously
differentiable function g : Rk → R so that

∇g(x) = ξ and ψ − g attains a local minimum at x.

Remark 5.1. The set of all viscosity subgradients of ψ at x is called the viscosity
subdifferential and it is denoted by D−φ(x) or ∂Dφ(x) (depending on the community);
see for instance [2, Lemma II.1.7] or [10, Proposition 3.4.12].

Observe that if for some σ > 0, we have

g(y) = ψ(x) + ⟨ξ, y − x⟩ − σ|y − x|2,

then ξ is actually a proximal subgradient of ψ at x; see [10, Theorem 1.2.5]. Recall
that (see Section 2) the set of all proximal subgradients of ψ at x is called the proximal
subdifferential, and is denoted by ∂Pφ(x). Although the inclusion ∂Pφ(x) ⊂ D−φ(x)
may be strict, it is possible to approximate any viscosity subgradient by a sequence of
proximal subgradients; see, for instance, [10, Proposition 3.4.5].

As mentioned in Section 2, the proximal subdifferential and the proximal normal
cone are related to each other via the relation

ξ ∈ ∂Pψ(x) ⇐⇒ (ξ,−1) ∈ Nepi(ψ) (x, ψ(x)) , ∀x ∈ Ω.

The characterization for the nearly weakly decreasing case follows from rather stan-
dard arguments and its proof similar to what can be found in mainstream references
in optimal control; see for instance [10, Theorem 4.5.7]. We provide the details of the
proof for the sake of completeness. Recall that the usual (maximized) Hamiltonian is
given by

H(x, ζ) := max
a∈A

{−⟨ζ, f(x, a)⟩ − ℓ(x, a)}
and also that we have defined

SC(τ, x, ζ) := sup
{
⟨ζ, v⟩ : v ∈ m(x)∂P distC(τ)(x)

}
.

Theorem 5.1. Consider a given continuous function φ : gr (C) ⊂ R×RN → R. Then
the following assertions are equivalent:
(a) φ is nearly weakly decreasing for the optimal control problem of sweeping

processes.
(b) φ is a proximal supersolution, that is, for any (τ, x) ∈ gr (C) we have

−θ +H(x, ζ) +SC(τ, x, ζ) + λφ(τ, x) ≥ 0, ∀(θ, ζ) ∈ ∂Pφ(τ, x). (21)
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(c) φ is a viscosity supersolution, that is, for any (τ, x) ∈ gr (C) we have

−θ +H(x, ζ) +SC(τ, x, ζ) + λφ(τ, x) ≥ 0, ∀(θ, ζ) ∈ D−φ(τ, x). (22)

Proof. The fact that (c) ⇒ (b) is straightforward from the definition of the corre-
sponding subdifferentials; see Remark 5.1. Consequently, the equivalence (c) ⇔ (b)
is actually a consequence of [10, Proposition 3.4.5] combined with Lemma 4.

Thus, to conclude it remains to prove that (a) ⇔ (b). Let us first prove the
implication (a) ⇒ (b): Suppose that φ is nearly weakly decreasing for the optimal
control problem of sweeping processes. Let (τ, x) ∈ gr (C). If ∂Pφ(τ, x) = ∅, then (22)
trivially holds. Otherwise, assume that ∂Pφ(τ, x) ̸= ∅ and let (θ, ζ) ∈ ∂Pφ(τ, x). Since
φ is nearly weakly decreasing, given ε > 0 and T ≥ τ , there exists ᾱ ∈ A such that
for all

ε(T − τ)+φ(τ, x) ≥
∫ T

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt+ eλ(τ−T )φ(T, yᾱτ,x(T )).

Moreover, by the definition of proximal subdifferential, there exist σ, δ > 0 such that
for all T ∈ [τ, τ + δ)

φ(T, yᾱτ,x(T )) ≥ φ(τ, x) + θ(T − τ) + ⟨ζ, yᾱτ,x(T )− x⟩ − η(T, τ),

where η(T, τ) := σ|T − τ |2 + σ∥yᾱτ,x(T ) − x∥2. Therefore, combining the latter
inequalities, we obtain that for all T ∈ [τ, τ + δ)

ε(T − τ) ≥ (eλ(τ−T ) − 1)φ(τ, x) +

∫ T

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt+ eλ(τ−T )θ(T − τ)

+ eλ(τ−T )⟨ζ, yᾱτ,x(T )− x⟩ − eλ(τ−T )η(T, τ).

Moreover, for T ∈ [τ, τ + δ)∫ T

τ

eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t))dt+ eλ(τ−T )⟨ζ, yᾱτ,x(T )− x⟩

=

∫ T

τ

[
eλ(τ−t)ℓ(yᾱτ,x(t), ᾱ(t)) + eλ(τ−T )⟨ζ, ẏᾱτ,x(t)⟩

]
dt

≥
∫ T

τ

min
a∈A

{
eλ(τ−t)ℓ(yᾱτ,x(t), a) + eλ(τ−T )⟨ζ, f(yᾱτ,x(t), a)⟩

}
dt

− eλ(τ−T )

∫ T

τ

SC(t, y
ᾱ
τ,x(t), ζ)dt.
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The last inequality comes from (5) and the definition ofSC. Therefore, for T ∈ [τ, τ+δ)

ε(T − τ) ≥ (eλ(τ−T ) − 1)φ(τ, x) + eλ(τ−T )θ(T − τ)− eλ(τ−T )η(T, τ)

+

∫ T

τ

min
a∈A

{
eλ(τ−t)ℓ(yᾱτ,x(t), a) + eλ(τ−T )⟨ζ, f(yᾱτ,x(t), a)⟩

}
dt

− eλ(τ−T )

∫ T

τ

SC(t, y
ᾱ
τ,x(t), ζ)dt.

Notice that by Lemma 1, it follows that

∥yᾱτ,x(t)− x∥ ≤
(
e2βf (t−τ) − 1

)(
1 + ∥x∥+ κC

2βf

)
, ∀t ∈ [τ, T ].

Also for any a ∈ A and t ∈ [τ, T ] fixed we have

eλ(τ−t)ℓ(yᾱτ,x(t), a) ≥ eλ(τ−T )ℓ(x, a)− κℓ∥yᾱτ,x(t)− x∥ − βℓ

(
eλ(τ−t) − eλ(τ−T )

)
and

⟨ζ, f(yᾱτ,x(t), a)⟩ ≥ ⟨ζ, f(x, a)⟩ − κf∥ζ∥∥yᾱτ,x(t)− x∥
Consequently,∫ T

τ

min
a∈A

{
eλ(τ−t)ℓ(yᾱτ,x(t), a) + eλ(τ−T )⟨ζ, f(yᾱτ,x(t), a)⟩

}
dt

≥ eλ(τ−T )(T − τ)min
a∈A

{ℓ(x, a) + ⟨ζ, f(x, a)⟩} − βℓ

∫ T

τ

(
eλ(τ−t) − eλ(τ−T )

)
dt

−
(
1 + ∥x∥+ κC

2βf

)
(κℓ + κf∥ζ∥)

∫ T

τ

(
e2βf (t−τ) − 1

)
dt

Notice that, since (t, y) 7→ SC(t, y, ζ) is upper semicontinuous at (τ, x) and t 7→
yaτ,x(t) is continuous at τ , it follows that t 7→ SC(t, y

a
τ,x(t), ζ) is upper semicontinuous

at t = τ . Therefore, we may assume that

SC(t, y
a
τ,x(t), ζ) ≤ SC(τ, x, ζ) + ε, ∀t ∈ [τ, τ + δ).

Consequently, we get

1

(T − τ)

∫ T

τ

SC(t, y
ᾱ
τ,x(t), ζ)dt ≤ SC(τ, x, ζ) + ε.
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Therefore, gathering the information provided by the preceding inequalities we get
for T ∈ [τ, τ + δ)

−ε ≤ eλ(τ−T ) − 1

τ − T
φ(τ, x)− eλ(τ−T )θ +

eλ(τ−T )η(T, τ)

T − τ

+ eλ(τ−T )H(x, ζ) +
βℓ

T − τ

∫ T

τ

(
eλ(τ−t) − eλ(τ−T )

)
dt

+

(
1 + ∥x∥+ κC

2βf

)
κℓ + κf∥ζ∥
T − τ

∫ T

τ

(
e2βf (t−τ) − 1

)
dt

+ eλ(τ−T ) (SC(τ, x, ζ) + ε) .

Thus, letting T → τ and ε→ 0, we obtain (22).
Now, we turn to the second part of the proof ((a) ⇐ (b)). According to Propo-

sition 4.4, it is enough to show that (Ep(φ),Γ) is weakly invariant. Thus, we aim to
prove that (22) implies that

min
v∈−ΓD(p)

⟨η, v⟩+ min
v∈ΓC(p)

⟨η, v⟩ ≤ 0, ∀η ∈ NEp(φ) (p) .

The conclusion will then follow from Theorem 4.2.
Let η ∈ NEp(φ) (p) with p = (σ, τ, x, z, γ). Consider

ψ(σ, τ, x, z) := e−λσφ(τ, x) + z.

Notice that Ep(φ) = epi(ψ), and so, η = (ξ,−q) for some q ≥ 0 and, if q ̸= 0, we also
have 1

q ξ ∈ ∂Pψ(σ, τ, x, z). Les us consider now two cases:

Case q > 0: under these circumstances, we have that γ = ψ(σ, τ, x, z) and

1

q
ξ ∈ ∂Pψ(σ, τ, x, z) ⊂ {−λe−λσφ(τ, x)} × e−λσ∂Pφ(τ, x)× {1}

Therefore, for some (θ, ζ) ∈ ∂Pφ(τ, x), a ∈ A and g ∈ ∂P distC(t)(x) we have

min
v∈Γ(p)

⟨η, v⟩ ≤ qe−λσ (−λφ(τ, x) + θ + ⟨ζ, f(x, a)−m(x)g⟩+ ℓ(x, a)) ,

which implies that

min
v∈Γ(p)

⟨η, v⟩ ≤ −qe−λσ (λφ(τ, x)− θ +H(x, ζ) +SC(τ, x, ζ)) .

Hence, by (22) we get min{⟨η, v⟩ : v ∈ Γ(t, p)} ≤ 0.
Case q = 0: We can use Rockafellar’s horizonality theorem (see [19]) and proceed
as in [16, Section 5.2]. Indeed, Suppose now that q = 0, there exist some sequences
{(σn, τn, xn, zn)} ⊂ dom(ψ), {(ξn)} ⊂ RN+2 and {qn} ⊂ (0,∞) such that

pn := (σn, τn, xn, zn, ψ(σn, τn, xn, zn)) → (σ, τ, x, z, ψ(τ, x, z))
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and

ηn := (ξn, qn) → (ξ, 0),
1

qn
ξn ∈ ∂Pψ(σnτn, xn, zn).

Thus, using the same argument as above we can show

min
v∈Γ(pn)

⟨ηn, v⟩ ≤ 0, ∀n ∈ N.

Hence, due to the fact that Γ has compact images, we can find some velocity vn ∈
Γ(σn, τn, xn, zn, ψ(σn, τn, xn, zn)) where the minimum is attained. Since the images
of Γ are locally bounded, the sequence {vn} can be taken uniformly bounded, and
moreover, because the graph of Γ is closed, we can take the liminf in the last inequality,
use that Γ(τ, x, z, ψ(σ, τ, x, z)) = Γ(σ, τ, x, z, γ) and we obtain (20).

Example 5.1. To illustrate that the value function is a solution of (22) in
Theorem 5.1, let us consider a simple example. Take f ≡ 0, ℓ ≡ c > 0, C(τ) = [0, 1]
and λ > 1. It is not difficult to see that ϑ(τ, x) = c

λ for any τ ∈ R and x ∈ [0, 1]. Here
gr (C) = R× [0, 1].

Notice that the Standing Assumptions are satisfied for any κC > 0 and βf > 0, so
that m(x) = κC + βf (1 + |x|) for any x ∈ R.

Moreover, it is not difficult to see that for any τ ∈ R we have

∂P distC(τ)(x) =



{−1} x < 0

[−1, 0] x = 0

{0} x ∈ (0, 1)

[0, 1] x = 1

{1} x > 1

and ∂Pϑ(τ, x) =


{0} × (−∞, 0] x = 0

{(0, 0)} x ∈ (0, 1)

{0} × [0,+∞) x = 1.

Consequently, since H(x, ζ) = −c and

SC(τ, x, ζ) =


(κC + βf )max{−ζ, 0} x = 0

0 x ∈ (0, 1)

(κC + 2βf )max{ζ, 0} x = 1

we have for x ∈ (0, 1)

−θ +H(x, ζ) +SC(τ, x, ζ) + λϑ(τ, x) = −0− c− 0 + λ
c

λ
= 0

and at the boundary points, for (θ, ζ) ∈ ∂Pϑ(τ, 0) we have

−θ+H(0, ζ)+SC(τ, 0, ζ)+λϑ(τ, 0) = −0− c− (κC + βf )ζ +λ
c

λ
= −(κC + βf )ζ ≥ 0
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and for (θ, ζ) ∈ ∂Pϑ(τ, 1) we have

−θ+H(1, ζ)+SC(τ, 1, ζ)+λϑ(τ, 1) = −0− c+(κC+2βf )ζ+λ
c

λ
= (κC+2βf )ζ ≥ 0.

Thus, ϑ is a proximal supersolution.
Let us now focus on the strongly increasing case. Similarly as in the preceding

case, this characterization will be proven by means of of the proximal superdifferential,
which corresponds, for any u.s.c. function ψ : Ω ⊂ Rk → R to the set

∂Pψ(x) = −∂P (−ψ)(x).

In this case, the proximal superdifferential and the proximal normal cone are
related to each other via the relation

ξ ∈ ∂Pψ(x) ⇐⇒ (−ξ, 1) ∈ Nhypo(ψ) (x, ψ(x)) , ∀x ∈ Ω,

where hypo(ψ) is the hypograph of the function ψ : Ω ⊂ Rk → R.
Theorem 5.2. Consider a given u.s.c. function φ : gr (C) ⊂ R×RN → R. Then φ is
strongly increasing for the optimal control problem of sweeping processes if and only
if φ is a proximal subsolution, that is, for any (τ, x) ∈ gr (C) we have

−θ +H(x, ζ)−SC(τ, x,−ζ) + λφ(τ, x) ≤ 0, ∀(θ, ζ) ∈ ∂Pφ(τ, x). (23)

Proof. We start by proving the implication (⇒): Let (τ, x) ∈ gr (C).
First of all note that (θ, ζ) ∈ ∂Pφ(τ, x) if and only if ∃σ, δ > 0 such that

φ(s, y) ≤ φ(τ, x) + θ(s− τ) + ⟨ζ, y − x⟩+ σ
(
(s− τ)2 + ∥y − x∥2

)
for any (s, y) ∈ B((τ, x), δ) ∩ gr (C).

Take a ∈ A and let yaτ,x be the trajectory associated with constant control α ≡ a.
Since φ is strongly increasing we have for any h > 0

eλhφ(τ, x) ≤
∫ τ+h

τ

eλ(τ+h−t)ℓ(yaτ,x(t), a)dt+ φ(τ + h, yaτ,x(τ + h)).

Therefore, for h > 0 small enough we have

0 ≤
∫ τ+h

τ

(
eλ(τ+h−t)ℓ(yaτ,x(t), a) + ⟨ζ, ẏaτ,x(t)⟩

)
dt+

(
1− eλh

)
φ(τ, x) + θh

+ σ
(
h2 + |yaτ,x(τ + h)− x|2

)
.

Notice that∫ τ+h

τ

eλ(τ+h−t)ℓ(yaτ,x(t), a) ≤
∫ τ+h

τ

ℓ(yaτ,x(t), a) + βℓh

(
eλh − 1

λh
− 1

)
.
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Thus, by Lemma 1 we get 1
h∥yaτ,x(τ + h) − x∥ is uniformly bounded with respect to

h > 0 small enough, and therefore

0 ≤ 1

h

∫ τ+h

τ

(
ℓ(yaτ,x(t), a) + ⟨ζ, ẏaτ,x(t)⟩

)
dt− λφ(τ, x) + θ +O(h),

with O(h) → 0 if h→ 0+. Since yaτ,x is also a solution of (5), we have

⟨ζ, ẏaτ,x(t)⟩ ≤ ⟨ζ, f(yaτ,x(t), a)⟩+SC(t, y
a
τ,x(t), ζ), for a.e. t ∈ [τ, τ + h].

Notice that

ℓ(yaτ,x(t), a) + ⟨ζ, f(yaτ,x(t), a)⟩ ≤ ℓ(x, a) + ⟨ζ, f(x, a)⟩+ (κℓ + κf∥ζ∥)∥yaτ,x(t)− x∥.

Thus, in the light of Lemma 1, we get

lim sup
h→0+

1

h

∫ τ+h

τ

(
ℓ(yaτ,x(t), a) + ⟨ζ, f(yaτ,x(t), a)⟩

)
dt ≤ ℓ(x, a) + ⟨ζ, f(x, a)⟩,

so to conclude, since a ∈ A is arbitrary, it remains to show that

lim sup
h→0+

1

h

∫ τ+h

τ

SC(t, y
a
τ,x(t), ζ)dt ≤ SC(τ, x, ζ).

Let ε > 0 and notice that, since (t, y) 7→ SC(t, y, ζ) is upper semicontinuous at
(t, y) = (τ, x) and t 7→ yaτ,x(t) is continuous at t = τ , t 7→ SC(t, y

a
τ,x(t), ζ) is upper

semicontinuous at t = τ . Therefore, there is δ > 0 such that

SC(t, y
a
τ,x(t), ζ) ≤ SC(τ, x, ζ) + ε, ∀t ∈ [τ, τ + δ].

Consequently, for any h ∈ (0, δ) we have

1

h

∫ τ+h

τ

SC(t, y
a
τ,x(t), ζ)dt ≤ SC(τ, x, ζ) + ε.

Therefore, taking lim sup over h→ 0+, and then letting ε→ 0 we get (22).
Let us now focus on the other implication (⇐). In the light of Proposition 4.4, it

will be enough to show that (Hy(φ),Γ) is strongly invariant. Our vehicle to prove this
will be Theorem 4.1.

Take p0 = (σ0, τ0, x0, z0, γ0) ∈ Hy(φ). Recall that this means that

e−λσ0φ(τ0, x0) + z0 ≥ γ0.

We need to check that for all t ∈ R

min
v∈−ΓD(p0)

⟨v, η⟩+ max
v∈ΓC(p0)

⟨v, η⟩ ≤ 0 ∀ η ∈ NHy(φ) (p0) . (24)
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Take η0 ∈ NHy(φ) (p0), then η0 = (ξ0, q0) for some q0 ≥ 0 and − 1
q0
ξ0 ∈

∂Pψ(σ0, τ0, x0, z0) whenever q0 > 0, where ψ is as in the proof of Theorem 5.1, that is

ψ(σ, τ, x, z) := e−λσφ(τ, x) + z

Let us analyze the case q0 > 0 first. It is not difficult to see that we must have
γ0 = ψ(σ0, τ0, x0, z0) and also

∂Pψ(σ0, τ0, x0, z0) ⊂ {−λe−λσ0φ(τ0, x0)} × e−λσ0∂Pφ(τ0, x0)× {1}

It follows that for some (θ0, ζ0) ∈ ∂Pφ(τ0, x0), we also have

− 1

q0
ξ0 = (−λe−λσ0φ(τ0, x0), e

−λσ0θ0, e
−λσ0ζ0, 1)

and since any v ∈ ΓC(p0) can be written as convex combinations of vectors of the
form ṽ = (1, 1, f(x0, a), e

−λσ0ℓ(x0, a), 0) for some a ∈ A, we have

⟨v, η0⟩ ≤ −q0e−λσ0 (−λφ(τ0, x0) + θ0 +H(x0, ζ0)) .

Take now, v0 ∈ −ΓD(p0) such that

v0 · η0 = min
v∈−ΓD(p0)

⟨v, η0⟩.

In particular, from the definition of ΓD(p0) it follows that

v0 · η0 ≤ −q0e−λσ0SC(τ0, x0, ζ0).

Therefore, for any v ∈ ΓC(p0) we have

min
v∈−ΓD(p0)

⟨v, η0⟩+ ⟨v, η0⟩ = −q0e−λσ0 (θ0 +H(x0, ζ0) +SC(τ0, x0, ζ0)− λφ(τ0, x0))

It is then clear that (23) implies (24).
The case q0 = 0 is also straightforward consequence of the Rockafellar’s hori-

zonality theorem. Here are the details. If q0 = 0, there exist some sequences
{(σn, τn, xn, zn)} ⊂ dom(ψ), {(ξn)} ⊂ RN+2 and {qn} ⊂ (0,∞) such that

pn := (σn, τn, xn, zn, ψ(σn, τn, xn, zn)) → (σ, τ, x, z, ψ(σ, τ, x, z))

and

ηn := (ξn, qn) → (ξ, 0),
1

qn
ξn ∈ ∂Pψ(σn, τn, xn, zn).
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Thus, using the same argument as above, we can show

min
v∈−ΓD(pn)

⟨v, ηn⟩+ max
v∈ΓC(pn)

⟨v, ηn⟩ ≤ 0, , ∀n ∈ N. (25)

Finally, notice that, since ΓC is in particular a lower semicontinuous multifunction,
by the Maximum Theorem (e.g. [1, Theorem 1.2.4]), the mapping

(p, η) 7→ max
v∈ΓC(p)

⟨v, η⟩

is lower semicontinuous. Hence, due to the fact that ΓD has compact images, we
can find some velocity vn ∈ Γ(σn, τn, xn, zn, ψ(σn, τn, xn, zn)) where the minimum is
attained. Since the images of ΓD are locally bounded, the sequence {vn} can be taken
uniformly bounded, and moreover, because the graph of ΓD is closed, we can take the
liminf in the equation (25), use that ΓD(τ, x, z, ψ(σ, τ, x, z)) = ΓD(σ, τ, x, z, γ) and we
obtain (20).

Example 5.2. As in Example 5.1, to illustrate that the value function is a solution
of (23) in Theorem 5.2 we consider the following data: f ≡ 0, ℓ ≡ c > 0, C(τ) = [0, 1]
and λ > 1. Recall that ϑ(τ, x) = c

λ for any τ ∈ R and x ∈ [0, 1].
In this case, it is not difficult to see that for any τ ∈ R we have

∂Pϑ(τ, x) =


{0} × [0,+∞) x = 0

{(0, 0)} x ∈ (0, 1)

{0} × (−∞, 0] x = 1.

Consequently, since H(x, ζ) = −c and

SC(τ, x,−ζ) =


(κC + βf )max{ζ, 0} x = 0

0 x ∈ (0, 1)

(κC + 2βf )max{−ζ, 0} x = 1

we have for x ∈ (0, 1)

−θ +H(x, ζ)−SC(τ, x,−ζ) + λϑ(τ, x) = −0− c− 0 + λ
c

λ
= 0

and at the boundary points, for (θ, ζ) ∈ ∂Pϑ(τ, 0) we have

−θ+H(0, ζ)−SC(τ, 0,−ζ)+λϑ(τ, 0) = −0−c− (κC+βf )ζ+λ
c

λ
= −(κC+βf )ζ ≤ 0

and for (θ, ζ) ∈ ∂Pϑ(τ, 1) we have

−θ+H(1, ζ)−SC(τ, 1,−ζ)+λϑ(τ, 1) = −0−c+(κC+2βf )ζ+λ
c

λ
= (κC+2βf )ζ ≤ 0.
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Thus, ϑ is a proximal subsolution.
To conclude this section, we show that the notion of strongly increasing can also

be characterized in the usual sense of viscosity supersolution.
Definition 5.2. Let ψ : Ω ⊂ Rk → R be an u.s.c. function. A vector ξ ∈ Rk is
called a viscosity supergradient of ψ at x ∈ Ω if and only if there exists a continuously
differentiable function g : Rk → R so that

∇g(x) = ξ and ψ − g attains a local maximum at x.

The set of all viscosity supergradients of ψ at x is called the viscosity superdifferential
and it is denoted by D+φ(x).
Corollary 5.1. Consider a given u.s.c. function φ : gr (C) ⊂ R× RN → R. Then φ
is strongly increasing for the optimal control problem of sweeping processes if and only
if φ is a viscosity subsolution, that is, for any (τ, x) ∈ gr (C) we have

−θ +H(x, ζ)−SC(τ, x,−ζ) + λφ(τ, x) ≤ 0, ∀(θ, ζ) ∈ D+φ(τ, x). (26)

Proof. It is enough to prove that (23) is equivalent to (26). As a matter of fact, it is
not difficult to see that ∂Pφ(τ, x) ⊂ D+φ(τ, x); see for instance [10, Exercise 1.2.8].
Consequently, any solution of (26) is also a solution of (23). Moreover, it is also
apparent that D+φ(τ, x) = −D−(−φ)(τ, x). Therefore, using similar approximation
arguments as in the first part of the proof of Theorem 5.1, we can prove that any
solution of (23) is also a solution of (26), and so the proof is complete.

6 Discussion

In this paper, we have proven a Uniqueness Theorem for the value function associated
with an optimal control problem governed by a sweeping process with a controlled
drift. The uniqueness has been accomplished under a very important feature provided
by the sweeping process: the value function’s continuity. As we may recall, this is not
a common feature for standard optimal control problems with state constraints. Also,
by means of an appropriate Relaxation Theorem, we have been able to prove our
Uniqueness Theorem without requiring any convexity assumptions on the dynamics
nor on the running cost, as, for instance, done in [16] for problems with standard
optimal control problems with state constraints or in [11, 21] for optimal control
problems of sweeping processes.

As pointed out in Remark 3.2, under appropriate conditions, Theorem 3.3 corre-
sponds to a well-posedness result for a boundary value problem of the Dirichlet type
for an HJB equation. A comparison principle was obtained in [17] for equations of this
type, however it doesn’t cover the equations derived from an optimal control problem
governed by a sweeping process, since the boundary condition has a different struc-
ture; see [17, Theorem 2.1]. In a related note, many authors have studied problems
with discontinuous Hamiltonians, either motivated by problems with unbounded data
or with state constraints; see for instance [3, 18]. The discontinuity considered in these
papers are of different nature than the one considered in this work. Indeed, in [3] the
discontinuity comes from the fact that supremum in the definition of the Hamiltonian
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may no be finite and in [18] from considering a smaller set of admissible controls at
the boundary than in the interior of the state constraints. Notice that in our case, we
introduce a completely new term at the boundary (the functions SC), which is not
related with the Hamiltonian in the interior of the state cosntraints.

As mentioned in the paper, the Standing Assumptions are not sharp for getting
the continuity of the value function. For example, the running cost does not need to
be globally Lipschitz continuous; Local Lipschitz continuity is enough. The Lipschitz
continuity of the moving set (H2.ii) can be replaced with absolute continuity:

(H2.ii) there is ν : R → R absolutely continuous such that for any fixed x ∈ RN we have

|distC(t)(x)− distC(s)(x)| ≤ |ν(t)− ν(s)|, ∀t, s ∈ R.

Also, the dynamics can be non-autonomous with measurable dependence on the
time variable, and (H3) can be replaced with

(H3.i) f(·, x, a) is measurable on R for any fixed (x, a) ∈ RN ×A.
(H3.ii) f(t, x, ·) is continuous on A for any fixed (t, x) ∈ R× RN .
(H3.iii) ∃κf ∈ L1

loc nonnegative such that for any x1, x2 ∈ RN and for a.e. t ∈ R we have

sup
a∈A

∥f(t, x1, a)− f(t, x2, a)∥ ≤ κf (t)∥x1 − x2∥.

(H3.iv) there is βf ∈ L1
loc nonnegative such that

sup
a∈A

∥f(t, x, a)∥ ≤ βf (t)(1 + ∥x∥), ∀x ∈ RN , for a.e. s ∈ R.

The only consequence these changes have is that the Gronwall estimates in Lemma 1
are slightly different, but the proof of Theorem 3.1 remains almost the same.

However, the Standing Assumptions are needed in their actual form to prove the
Uniqueness Theorem. Several technical difficulties, particularly with the strong invari-
ance principle, arise when considering non-autonomous dynamics or an unbounded
running cost, which require further analysis. This is beyond the scope of this paper.

Appendix A An example

To conclude this paper, we make a discussion about the fact that the notion of
constrained viscosity solution of the classical HJB equation is not suitable for charac-
terizing the value function associated with an optimal control problem governed by a
sweeping process with a controlled drift. Hence, a new Hamiltonian is required for such
a purpose. To do this, let us consider the following example, which is an adaptation
of [2, Example IV.5.3] to a sweeping process context.

Consider the following data:

C =
{
x ∈ R2 : x2 ≤ x21

}
, A = [−1, 1], λ = 1, f(x, a) = (a, 0)
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and

ℓ(x, a) =


1 if x1 < 0,

1− x1 if 0 ≤ x1 ≤ 1,

0 if x1 > 1.

Notice that here we are in the autonomous case.
One can see that optimal solutions of this problem tend to move to the right with

maximal speed (control α(t) = 1) until reaching the set {x ∈ C : x1 ≥ 1}; from that
point, any control α(t) ∈ [0, 1] provides an optimal trajectory. Moreover, the influence
of the normal cone in (2) can be disregarded for any optimal trajectory that starts in
{x ∈ C : x1 ≥ 0 ∨ x2 ≤ 0} (gray area in Figure A1) because every arc starting from
{x ∈ C : x1 ≥ 1, x2 ≥ 1} is optimal and may touch the boundary of C several times;
for instance, at t = 0 if x1 =

√
x2 and never if x2 < 0. Consequently, it is not difficult

to see that the value function of this problem is the same as given in [2, Example
IV.5.3] except in {x ∈ C : x1 < 0 < x2} (red area in Figure A1). In particular

ϑ(x) =


1 + ex1−1 − ex1 if x1, x2 ≤ 0,

ex1−1 − x1 if 0 ≤ x1 ≤ 1,

0 if 1 ≤ x1,

x ∈ C.

R

R

ϑ(x) =??

ϑ(x) 1 + ex1−1 − ex1 ex1−1 − x1 0

`(x, u) 1 1− x1 0

(x1, x2)

NC(x1, x2)

(0, 0)

(1, 1)

Fig. A1 Sketch of the example

An optimal trajectory that starts in {x ∈ C : x1 < 0 < x2}, once it reaches the
boundary of C, it slides along that curve downward until getting at (0, 0); this is due
to the influence of the normal cone in the dynamical system (2). From that point
onwards it moves horizontally to the right as described earlier. To be more precise,
let y∗x : [0,+∞) → C be an optimal solution that starts at y∗x(0) = x ∈ C such that
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x1 < 0 < x2. Let T (x) > 0 be the time this optimal trajectory requires to reach (0, 0).
Then, the optimal value of the problem, in this case, is given by

ϑ(x) =

∫ T (x)

0

e−tdt+ e−T (x)ϑ(0, 0) = 1− e−T (x) + e−T (x)−1.

• Let τ0(x) := min
{
t ∈ [0,+∞) : y∗y(t) ∈ ∂C

}
< T (x). Since the dynamics on

int (C) is determined only by f because NC (·) = {(0, 0)} on int (C), it follows
that

τ0(x) = −√
x2 − x1 and y∗x(τ0(x)) = (−√

x2, x2) .
• On the interval [τ0(x), T (x)] the optimal trajectory slides along the boundary of
C downward until getting at (0, 0), and so y∗x(T (x)) = (0, 0). Because NC (x) =
{(−2ux1, u) : u ≥ 0} for x ∈ ∂C, the dynamics of the optimal trajectory on the
time interval [τ0(x), T (x)] is given by

ẏ1(t) = 1 + 2u(t)y1(t), ẏ2(t) = −u(t) and u(t) ≥ 0.

Moreover, the optimal trajectory is subject to the path constraint

y21(t) = y2(t), for any t ∈ [τ0(x), T (x)].

Thus, derivating this state constraint with respect to time, we can get an explicit
formula for the parameter u(t). Indeed,

u(t) = − 2y1(t)

4y21(t) + 1
, for a.e. t ∈ [τ0(x), T (x)].

Note that u(t) ∈
[
0, 12
]
for any t ∈ [τ0(x), T (x)]. Hence, the dynamical system that

governs the behavior of the optimal trajectory on [τ0(x), T (x)] can be reduced to
an ODE system:

ẏ1(t) =
1

4y21(t) + 1
and ẏ2(t) =

2y1(t)

4y21(t) + 1
, a.e. on [τ0(x), T (x)].

It follows that

4

3
y31(t) + y1(t) = −4

3

√
x32 −

√
x2 + (t− τ0(x)), ∀t ∈ [τ0(x), T (x)].

From here, we get that

T (x) =
4

3

√
x32 +

√
x2 + τ0(x) =

4

3

√
x32 − x1,

and consequently

ϑ(x) = 1− exp

(
x1 −

4

3

√
x32

)
+ exp

(
x1 −

4

3

√
x32 − 1

)
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Note that ϑ turns out to be continuously differentiable on int (C) with

∇ϑ(x) =



(
e−T (x) − e−T (x)−1

)( −1

2
√
x2

)
if x1 < 0 < x2(

ex1−1 − ex1

0

)
if x1, x2 < 0,(

ex1−1 − 1

0

)
if 0 < x1 < 1,(

0

0

)
if 1 ≤ x1,

x ∈ int (C),

where
∇T (x) = (−1, 2

√
x2)

The Hamiltonian of this problem is H(x, p) = |p1| − ℓ(x, 1), and it is not difficult to
check that the value function is a classical solution of the HJB equation on int (C).

A.1 Is it a supersolution on C?

Recall that if ϑ is a viscosity supersolution on C of the HJB equation (in the con-
strained viscosity sense), then for any given x̄ ∈ C and any φ ∈ C1(R2) such that
ϑ− φ has a local minimum relative to C at x̄ ∈ C one must have

ϑ(x̄) +H(x,∇φ(x̄)) ≥ 0.

In particular, for x̄ ∈ ∂C with x̄1 < 0 we must have that any test function satisfies

ϑ(x̄) + |∂x1φ(x̄)| − 1 ≥ 0

In particular, if φ(x̄) = ϑ(x̄) then the conditions reduces to

|∂x1
φ(x̄)| ≥ e−T (x̄) − e−T (x̄)−1. (A1)

Let φ ∈ C1(R2) be given by

φ(x) := 1− exp

(
−√

x2 −
4

3

√
x32

)
+ exp

(
−√

x2 −
4

3

√
x32 − 1

)
, ∀x ∈ R2.

Note that φ(x̄) = ϑ(x̄) and |∂x1
φ(x̄)| = 0. Moreover, since in C we have that x1 ≤

−√
x2 and z 7→ −ez + ez−1 is a decreasing function, we have that φ(x) ≤ ϑ(x) for any

x ∈ C with x1 < 1. Thus, φ is a suitable test function however since |∂x1
φ(x̄)| = 0 we

get a contradict with (A1), and so ϑ is not a supersolution of the HJB equation on C.
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[13] Donchev, T., Ŕıos, V., Wolenski, P.: Strong invariance and one-sided Lipschitz
multifunctions. Nonlinear Anal. 60(5), 849–862 (2005). DOI 10.1016/j.na.2004.
09.050. URL https://doi.org/10.1016/j.na.2004.09.050

[14] Edmond, J.F., Thibault, L.: Relaxation of an optimal control problem involv-
ing a perturbed sweeping process. Math. Program. 104(2-3, Ser. B), 347–
373 (2005). DOI 10.1007/s10107-005-0619-y. URL https://doi.org/10.1007/
s10107-005-0619-y
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