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ABSTRACT. The aim of this paper is to study the value function of a
time-continuous linear quadratic optimal control problem with input and
state constraints. No coercive assumptions are made, which leads to op-
timal control problems whose trajectories are of bounded variation rather
than merely absolutely continuous. Our approach is based on classical
convex analysis, and we establish a Legendre-Fenchel type equality be-
tween the value function of the linear quadratic problem and its dual
problem.

1. INTRODUCTION

We study Linear Quadratic (LQ) optimal control problems with input and
state constraints. The dual problem thus lacks coercivity, and so it is natural
to drop the coercivity in the primal problem and consider state trajectories
that are arcs of bounded variation.

Coercive unconstrained LQ optimal control problems have been widely
studied in the literature. In particular, a Hamilton-Jacobi theory has been
well established by mean of the Riccati equation; see for example Ander-
son and Moore (2007); Boltyanski and Poznyak (2011). However, little
attention has been addressed to input and/or state constrained problems for
continuous-time linear systems. We mention that there is considerable work
regarding discrete-time problems; see for example Bemporad et al. (2002);
Lewis et al. (2013).

In this paper we take a duality approach to study the value functions of
the LQ problem and its dual. In particular, we show (Theorem 2.1) that
the lower semicontinuous envelop of the value function are conjugate to
each other. Furthermore, these lower semicontinuous envelops correspond
to value function of some extended problem to arcs of bounded variation.
Moreover, we obtain under suitable conditions (Corollary 2.1), that the
value functions are dual to each other on the relative interior of their do-
mains.

The techniques we exhibit in this work are part of an abstract approach
we are currently investigating to construct a Hamilton-Jacobi theory and
develop a characteristic method for Fully convex optimal control problem
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with state constraints; see Hermosilla and Wolenski (2016). These results
aim at generalizing previous work for coercive unconstrained Fully Convex
Control problems obtained in Rockafellar and Wolenski (2000).

The paper is organized as follows: in Section 2 we present the LQ prob-
lem, its corresponding dual problem, and their extensions to impulsive sys-
tems. We also state the main results. In Section 3 we use a standard tech-
nique to implicitly include the constraints; the result is a reformulation re-
sembling a calculus of variations problem. Section 4 contains the proofs of
the main results stated in Section 2. Finally, in Section 5 we discuss our
results and outline future work.

1.1. Notation, basic definitions, and preliminaries. Suppose f : E→R∪
{±∞} is a function with E being a topological vector space. The effective
domain of f is the set dom( f ) := {x ∈ E | f (x)<+∞}. Then f is called (i)
proper if dom( f ) 6= /0 and f (x)>−∞ for all x ∈ E; (ii) convex if epi( f ) :=
{(x,r) ∈ E×R : f (x)≤ r} is a convex set, and (iii) lower semicontinuous if
epi( f ) is a closed set. The set of functions satisfying (i)-(iii) is denoted by
F (E).

When E = Rk, | · | denotes the Euclidean norm and 〈·, ·〉 is the Euclidean
inner product on Rk. The (Legendre-Fenchel) conjugate of f : Rk → R∪
{±∞} is

f ∗(y) := sup{〈x,y〉− f (x) | x ∈ dom( f )}.
It belongs to F (Rk) if f is proper and convex, and satisfies ( f ∗)∗= f when-
ever f ∈ F (Rk). If f : Rk → R∪ {+∞} is proper and convex, then f ∗∗

is the lower semicontinuous envelop of f . The recession function f∞ of
f ∈ F (Rk) is given by

f∞(d) := sup{ f (x+d)− f (x) | x ∈ dom( f )}

for a direction d ∈ Rk, and it also belongs to F (Rk) with the additional
property of being positively homogeneous. This is because f∞ is the sup-
port function of dom( f ∗), which means that f∞(d) = σdom( f ∗)(d), where
σZ(d) := supz∈Z〈d,z〉. The subdifferential is the set

∂ f (x) := {y ∈ Rk | f (z)≥ f (x)+ 〈y,z− x〉, ∀z ∈ Rk}.

The indicator of Z⊆ Rk is denoted by δZ and equals 0 on Z and +∞ off
of Z. Also, Z◦ and Z∞ are the polar and recession cones of Z, respectively:

Z◦ = {d ∈ Rk | 〈d,z〉 ≤ 0, ∀z ∈ Z}
Z∞ = {d ∈ Rk | ∃z ∈ Z, z+ td ∈ Z, ∀t > 0}

The relative interior of a convex set Z is denoted by ri(Z).
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Given a matrix M of dimension k, we define

fM(z) =
1
2
〈Mz,z〉, ∀z ∈ Rk.

Also, given Z⊆ Rk nonempty, we define

gM,Z(p) = ( fM +δZ)
∗(p) = sup

z∈Z
{〈z, p〉− fM(z)}, ∀p ∈ Rk

We also consider a matrix N of dimension k× l and define

hM,Z,N(q) = inf{( fM +δZ)(z) | Nz = q}, ∀q ∈ Rl

The following statement summarizes several facts that can be deduced from
classical convex analysis; see for instance (Auslender and Teboulle, 2003,
Theorem 2.5.4 and Proposition 2.6.1) (Rockafellar, 1970, Theorem 9.2).

Lemma 1.1. Given a symmetric positive semi-definite matrix M of dimen-
sion k, a nonempty convex closed subset Z ⊆ Rk and a matrix N of dimen-
sion k× l we have that:

• fM +δZ ∈ F (Rk) and ( fM +δZ)∞ = δker(M)+δZ∞

• gM,Z ∈ F (Rk) with dom(gM,Z) = (ker(M)∩Z∞)
◦

• hM,Z,N ∈ F (Rl), the infimum in the definition of hM,Z,N is attained
whenever q ∈ dom(hM,Z,N) and

(hM,Z,N)∞(d) = inf{δker(M)(z)+δZ∞
(z) | Nz = d}

We suppose T > 0 is fixed. In our setting an arc is just a function x :
[0,T ]→ Rn. The space of absolutely continuous and bounded variation
arcs are denoted by AC and BV, respectively. If x ∈ BV then x(t−) and
x(t+) stand for the left and right limits of x at t. Given a measure µ on [0,T ]
we denote by L1

n(dµ) the (equivalence class of) dµ integrable arcs. The
Lebesgue measure is dt.

2. LQ AND DUAL PROBLEMS

In this section we introduce the LQ problem and the value function asso-
ciated with this mapping. Furthermore, we exhibit the dual problem and its
corresponding value function. Due to the state constraints and a lack of co-
ercivity, we show how to extend both problems where the state trajectories
are arcs of bounded variation.

Throughout the paper, X ⊆ Rn and U ⊆ Rm are given sets, A,P,Q are
n×n matrices, B is a n×m matrix and R is a m×m matrix. The following
are the basic assumptions we consider:

Hypothesis 1. X and U are convex closed nonempty sets, P and Q are
symmetric positive definite matrices and R is a symmetric positive semi-
definite matrix.
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Remark 2.1. Note that Hypothesis 1, in particular the fact that P is positive
definite implies that gP,X is finite everywhere with dom(gP,X) = Rn. Note
that the same holds if P is only positive semi-definite but X is compact; this
is due to the fact either way ker(P)∩X∞ = {0}.

Besides the basic assumptions (Hypothesis 1), we also require a type of
constraint qualification, which will imply there are feasible arcs for both
primal and dual problems.

Hypothesis 2. int(X) 6= /0 and int(Y) 6= /0, where

Y = {y ∈ Rn | gR,U(B∗y)<+∞}
Moreover, there are x,y ∈ AC such that x(t) ∈ int(X) and y(t) ∈ int(Y) for
any t ∈ [0,T ], and

ẋ(t) ∈ Ax(t)+BU, for a.e. t ∈ [0,T ].

Remark 2.2. Note that Hypothesis 2 is trivially satisfied in some recogniz-
able cases: if there are x̄∈ int(X) and ū∈U such that 0 = Ax̄+Bū, then the
arc defined via x(t) := x̄ for any t ∈ [0,T ] satisfies the condition for int(X).
Also, if R is positive definite or U is compact, then Y = Rn and any y ∈ AC
provides the condition for int(Y).

2.1. LQ problem. We aim at studying the following optimization prob-
lem.

Problem 2.1 (LQ problem). Given τ ∈ [0,T ] and ξ ∈ X, minimize over all
x ∈ AC and u ∈ L1

m(dt)∫ T

τ

[ fP(x(t))+ fR(u(t))]dt + fQ(x(T ))(1)

subject to x(τ) = ξ, the dynamical constraint

ẋ(t) = Ax(t)+Bu(t), for a.e. t ∈ [τ,T ](2)

the input constraint

u(t) ∈ U, for a.e. t ∈ [τ,T ](3)

and the state constraint

x(t) ∈ X, ∀t ∈ [τ,T ].(4)

The value function associated with this optimal control problem is de-
noted by ϑτ(ξ) and equals the smallest value of the objective function (1)
while satisfying the restrictions (2), (3) and (4). The parameters (τ,ξ) ap-
pear in the initial condition x(τ) = ξ. Let us point out that, a priori, the
value function is defined only on X, and that in general, its effective do-
main is only a subset of X. By convention, thus, we have ϑτ(ξ) = +∞
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whenever ξ /∈ X and τ ∈ [0,T ]. Furthermore, it is worthwhile to notice that
ϑT (ξ) = fQ(ξ) for any ξ ∈ X.

It is not difficult to check the following claims about ϑτ.

Lemma 2.1. Under Hypothesis 1 and 2 the value function ϑτ is proper
nonnegative and convex for any τ ∈ [0,T ].

2.2. Dual problem. The convexity in Problem 2.1 allows to developed a
duality theory inspired by the theory of conjugate functions of convex anal-
ysis. We define the dual to Problem 2.1 next.

Problem 2.2 (Dual problem). Given τ∈ [0,T ] and η∈Y, minimize over all
y ∈ AC the functional∫ T

τ

[gP,X(ẏ(t)+A∗y(t))+gR,U(B∗y(t))]dt + fQ−1(y(T ))

subject to y(τ) =−η and to the state constraint

y(t) ∈ Y, ∀t ∈ [τ,T ](5)

We denote by ωτ(η) the value function associated with Problem 2.2, that
is, the least value of the objective function in Problem 2.2 over arcs satisfy-
ing the initial condition y(τ) = −η and the state constraint (5). It is again
worthwhile to notice that ωτ is defined on Rn and that ωT (η) = fQ−1(η) for
any η ∈ Y (because fQ−1 is even).

By Lemma 1.1, we readily see that ωτ is also convex.

Lemma 2.2. Under Hypothesis 1, ωτ is convex for τ ∈ [0,T ].

Let us point out that the value functions ϑτ and ωτ satisfy a weak duality
relation.

Proposition 2.1. Under Hypothesis 1 , for any τ ∈ [0,T ]

ϑτ(ξ)+ωτ(η)≥ 〈ξ,η〉, ∀ξ,η ∈ Rn

If Hypothesis 2 holds, then ωτ is also a proper function.

2.3. Extended LQ problems and their duals. When state constraints are
involved, it is expected that the adjoint arc will have jumps whenever the
constraint is active, and this naturally leads to the dual problem minimizing
over BV rather than AC. The philosophy of convex analysis is that sym-
metry between primal and dual problems should be adhered to, and hence
the primal problem should be extended to minimizing over arcs of bounded
variation as well. For these reasons, and following the ideas introduced in
Rockafellar (1976) we extend Problem 2.1 and Problem 2.2 to minimization
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problems over BV in the following manner. Any z ∈ BV induces a Borel
measure dz and has the Lebesgue decomposition of form

dz(t) = ż(t)dt +πz(t)dµ(t),

where ż(t)dt is the absolutely continuous part and πz(t) is the singular part
with respect to Lebesgue measure.

The extended LQ problem is defined as follows.

Problem 2.3 (Extended LQ problem). Given τ ∈ [0,T ] and ξ ∈ Rn, mini-
mize over all x ∈ BV, u ∈ L1

m(dt) and θ ∈ L1
m(dµ) the functional∫ T

τ

[ fP(x(t))+ fR(u(t))]dt + fQ(x(T+))(6)

subject to x(τ−) = ξ, the dynamical constraint (2), the input constraint (3),
the state constraint (4), the impulsive input constraint

θ(t) ∈ ker(R)∩U∞, dµ-a.e. t ∈ [0,T ].(7)

and the impulsive dynamical constraint

πx(t) = Bθ(t), dµ-a.e. t ∈ [0,T ].(8)

Let us emphasize that the state constraint (4) can be interpreted in several
different ways because of possible jumps at the initial and/or terminal times.
For this reason we consider two value functions associated with Problem
2.3, one whose domain is contained in X (denoted by ϑext

τ (ξ)) and another
whose domain may be larger than X (denoted by vext

τ (ξ)). Both value func-
tions will be defined as the infimum value of the objective (6) in Problem
2.3 over BV arcs satisfying the initial condition x(τ−) = ξ and rest of the
constraints. The constraint (4) is interpreted as follows:

• The value function ϑext
τ (ξ) will be associated with the state con-

straints:

ξ, x(T+), x(t) ∈ X, ∀t ∈ (τ,T )

Moreover, we set ϑext
τ (ξ) = +∞ if ξ /∈ X.

• The value function vext
τ (ξ) will be associated with the state con-

straints:

x(t) ∈ X, ∀t ∈ (τ,T )

Note that for any τ ∈ [0,T ], we have

vext
τ (ξ)≤ ϑ

ext
τ (ξ)≤ ϑτ(ξ), ∀ξ ∈ Rn.

Also, as claimed for ϑτ, it is not difficult to see that the extended value
functions are also convex and proper.
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Lemma 2.3. Under Hypotheses 1 and 2, ϑext
τ and vext

τ are proper convex
functions for any τ ∈ [0,T ].

The extended dual problem is as follows.

Problem 2.4 (Extended dual problem). Given τ ∈ [0,T ] and η ∈ Rn, mini-
mize over all y ∈ BV the functional∫ T

τ

[gP,X(ẏ(t)+A∗y(t))+gR,U(B∗y(t))]dt

+
∫ T

τ

σX(πy(t))dµ(t)+ fQ−1(y(T+))

subject to y(τ−) =−η and to the state constraints (5).

In this case we also consider two value functions, ωext
τ (η) and wext

τ (η)
derived from two different interpretations of the state constraint (5). Both
are defined as the least possible value that the cost of Problem 2.4 can take
while satisfying the initial condition y(τ−) = −η, but (5) is interpreted as
follows:

• The value function ωext
τ (η) will be associated with the state con-

straints:

η, y(T+), y(t) ∈ Y, ∀t ∈ (τ,T )

Furthermore, we set ωext
τ (η) = +∞ if −η /∈ Y.

• The value function wext
τ (η) will be associated with the state con-

straints:

y(t) ∈ Y, ∀t ∈ (τ,T )

Note as well that for any τ ∈ [0,T ]

wext
τ (ξ)≤ ω

ext
τ (ξ)≤ ωτ(ξ), ∀η ∈ Rn.

Similarly as for the value function ωτ, Lemma 1.1 and Proposition 2.1 yield
to the following statement.

Lemma 2.4. Under Hypotheses 1 and 2, ωext
τ and wext

τ are proper convex
functions for any τ ∈ [0,T ].

Notice that the formulations of Problem 2.3 and Problem 2.4 are inde-
pendent of the singular measure µ. On the one hand, it is clear that if U
is bounded or R is invertible, then Problem 2.3 recovers the formulation
of Problem 2.1 because (7) implies that θ(t) = 0 for dµ-a.e. t ∈ [0,T ]; ac-
tually this is true whenever ker(R)∩U∞ = {0}. On the other hand, only
if X = Rn, that is no state constraints are considered on the LQ problem,
Problem 2.4 recovers the formulation of Problem 2.2. Let us emphasize
then that if Y = X = Rn, the three primal and dual value functions have
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exactly the same value, and hence, the problems can be studied in the light
of the unconstrained theory developed in Rockafellar and Wolenski (2000).

2.4. Main results. The main theorem presented in this paper is a stronger
version of Proposition 2.1 and it reads as follows.

Theorem 2.1. Under Hypotheses 1 and 2, for any τ ∈ [0,T ], the lower
semicontinuous envelop of ϑτ and ωτ agree respectively with ϑext

τ and ωext
τ .

Moreover, we have that

(wext
τ )∗(ξ) = ϑτ(ξ), ∀ξ ∈ ri(dom(ϑτ))

(vext
τ )∗(η) = ωτ(η), ∀η ∈ ri(dom(ωτ)).

Theorem 2.1 was proved in (Rockafellar and Wolenski, 2000, Theorem
5.1) when no state constraints are involved (X = Rn) and the cost is coer-
cive in the control (R is positive definite). However, the presence of state
constraints and possibly recession directions on the cost demands further
developments that go beyond the exposition and proof presented in that pa-
per. The technique we use to prove the main result requires to embed the
original problem into a larger space, namely, the space of arcs of bounded
variation. For this purpose, we first formulate the LQ problem at hand as a
calculus of variation problem by means of a standard infinite penalization
technique.

Theorem 2.1 will be a direct consequence of the following intermediate
result, which determines the behavior of the value functions of the extended
problems.

Theorem 2.2. Under Hypotheses 1 and 2, for any τ ∈ [0,T ] we have that
ϑext

τ , vext
τ , ωext

τ , wext
τ ∈ F (Rn) and the pairs (ϑext

τ ,wext
τ ) and (vext

τ ,ωext
τ ) are

conjugate to each other.

Let us mention that in the case the cost of Problem 2.1 is coercive or
more generally if ker(R)∩U∞ = {0}, Theorem 2.2 provides a finer version
of Theorem 2.1.

Corollary 2.1. Suppose Hypothesis 1 and 2 hold. Assume further that
ker(R)∩U∞ = {0}. Then, for any τ ∈ [0,T ] we have that ϑτ and ωext

τ are
conjugate to each other, and moreover (ωτ)

∗ = ϑτ.

3. FORMULATION AS A CALCULUS OF VARIATION PROBLEM

In this section, we exhibit a way to describe the LQ problem as a fully
convex Bolza problem and then, we present the corresponding extended
problem over arcs of bounded variation. This section explains as well how
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the dual problems have been obtained. For this purpose let us introduce
L : Rn×Rn→ R∪{+∞} via

L(x,v) =( fP +δX)(x)+hR,U,B(v−Ax)

It is not difficult to check that, under Hypothesis 1, the Lagrangian L is
a proper nonnegative and convex function. On the other hand, by Lemma
1.1, the Lagrangian L is also lower semicontinuous and the infimum in the
definition of hR,U,B is attained whenever L(x,v) is finite. In other words,
there is u ∈ U such that v = Ax+Bu and

hR,U,B(v−Ax) = fR(u)

It is also easy to check that

X = {x ∈ Rn | ∃v ∈ Rn such that L(x,v)<+∞}
The value function associated with this Lagrangian and the terminal cost

fQ is given by

Vτ(ξ) = inf
x∈AC
x(τ)=ξ

∫ T

τ

L(x(t), ẋ(t))dt + fQ(x(T ))

Note that Vτ(ξ) ≤ ϑτ(ξ) for any ξ ∈ X and τ ∈ [0,T ]. Indeed, if x ∈ AC
and u ∈ L1

m(dt) are a feasible arc and control for Problem 2.1, then ẋ(t) =
Ax(t)+Bu(t) and

L(x(t), ẋ(t))≤ fP(x(t))+ fR(u(t)), for a.e. t ∈ [τ,T ].

Therefore, the cost of Problem 2.1 is minored by the cost of Problem 2.3.
We claim that we actually have

ϑτ(ξ) =Vτ(ξ), ∀ξ ∈ X.(9)

Recall that L is nonnegative and moreover, we have that by allowing the in-
tegral cost to take infinite values, we are handling implicitly the constraints
over the input and state of the system. Indeed, note that Vτ(ξ) ∈ R implies
x(t) ∈ X for any t ∈ [τ,T ] (because x ∈ AC) and for almost every t ∈ [τ,T ]
we have

φ(t) := inf
u∈U
{ fR(u) | ẋ(t) = Ax(t)+Bu}<+∞.

This in turn means that the mapping defined by

U(t) := {u ∈ U | φ(t) = fR(u) and ẋ(t) = Ax(t)+Bu}
if ẋ(t) exists and φ(t) is finite, and U(t) := U otherwise, has nonempty
closed images for any t ∈ [τ,T ]. Also, for any u ∈ U, the mapping t 7→
fR(u)+ δ{0}(ẋ(t)−Ax(t)−Bu) is measurable on [τ,T ] and so t 7→ φ(t) is
also measurable. Consequently, for any open subset of O⊆Rm we have that
the set {t ∈ [τ,T ] |U(t)∩O)} is also a measurable set. Therefore, by the
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(Rockafellar and Wets, 2009, Corollary 14.6), there is u(t) ∈ U such that
the infimum in the definition of φ(t) is attained at u(t) with the mapping
t 7→ u(t) being measurable. This also provides the dynamical constraint
ẋ(t) = Ax(t)+Bu(t) for a.e. t ∈ [0,T ], which implies that there is no loss
of generality in assuming that u ∈ L1

m(dt) because Bu ∈ L1
n(dt). Therefore,

(9) folows.
On the other hand, following the definitions provided in Rockafellar and

Wolenski (2000), we have that the dual value function associated with V is

Wτ(η) = inf
y∈AC

y(τ−)=−η

∫ T

τ

K(y(t), ẏ(t))dt + fQ−1(y(T ))

with K : Rn×Rn→ R∪{+∞} being given by

K(y,w) = L∗(w,y)

Using directly the definition of the conjugate we get

K(y,w) = gP,X(w+A∗y)+gR,U(B∗y)

It is also possible to check that Hypothesis 1 leads to

Y = {y ∈ Rn | ∃w ∈ Rn such that K(y,w)<+∞}

from where we conclude that

ωτ(η) =Wτ(η), ∀η ∈ Y.(10)

3.1. Formulation for the extended problems. Following the theory de-
veloped in Rockafellar (1976), we now introduce the extended version of
the calculus of variation formulation of the LQ problem to arcs of bounded
variation. This problem can be stated in two ways, depending on whether
or not we allow to jump at the initial and terminal times from outside X into
the state constraint. We consider the following value functions

V ext
τ (ξ) = inf

x∈BV
x(τ−)=ξ

{
Jτ(x)+( fQ +δX)(x(T+))+δX(ξ)

}
and Vext

τ (ξ) = inf
x∈BV

x(τ−)=ξ

{
Jτ(x)+ fQ(x(T+))

}
where the functional Jτ : BV→

R∪{+∞} is given by

Jτ(x) =
∫ T

τ

L(x(t), ẋ(t))dt +
∫ T

τ

L∞(0,πx(t))dµ(t)

Note that Vext
τ (ξ)≤V ext

τ (ξ) and that Vext
τ (ξ) is the value function that allows

to jump from outside the state constraint at the initial and terminal times.
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Lemma 1.1 combined with some calculus rules for recession functions
lead to

L∞(0,d) = inf{δker(R)(z)+δU∞
(z) | Bz = d}.

This means that V ext
τ (ξ) and Vext

τ (ξ) are nonnegative, and moreover, if V ext(τ,ξ)<
+∞, then for dµ-a.e. on [τ,T ] we must have L∞(0,πx(t)) = 0 and

πx(t) = Bθ(t) for some θ(t) ∈ ker(R)∩U∞

Using similar arguments to those to check (9) and (Rockafellar and Wets,
2009, Corollary 14.6), it is not difficult to see that t 7→ θ(t) can be sup-
posed measurable and that there is no lost in generality in assuming that
θ ∈ L1

m(dµ). Therefore, similarly as done for ϑτ and Vτ, we have that

ϑ
ext
τ (ξ) =V ext

τ (ξ) and vext
τ (ξ) = Vext

τ (ξ)(11)

The extended versions of the dual LQ problem to BV are given as fol-
lows.

W ext
τ (η) = inf

y∈BV
y(τ−)=−η

Iτ(y)+( fQ−1 +δY)(y(T
+))+δY(−η)

and Wext
τ (η)= inf

y∈BV
y(τ)=−η

{
Iτ(y)+ fQ−1(y(T+))

}
where the functional Iτ : BV→

R∪{+∞} is given by

Iτ(y) =
∫ T

τ

K(y(t), ẏ(t))dt +
∫ T

τ

K∞(0,πy(t))dµ(t)

Also, calculus rules for recession functions imply that

K∞(0,d) = σX(d), ∀d ∈ Rn.

Hence, it is not difficult to see that

ω
ext
τ (η) =W ext

τ (η) and wext
τ (η) =Wext

τ (η)(12)

4. PROOF OF MAIN RESULTS

In this section we provide the arguments that prove Theorem 2.1 and
Theorem 2.2, we also prove Proposition 2.1. To begin with, we state an in-
termediate lemma and for sake of the exposition we introduce the following
notation. For given Λ : Rn×Rn→ R∪{+∞}, τ ∈ [0,T ] and a,b ∈ Rn we
define the fundamental kernel via

EΛ
τ (a,b) := inf

z∈BV

{∫ T

τ

Λ(z(t), ż(t))dt
∣∣∣∣ z(τ−) = a,

z(T+) = b

}
Lemma 4.1. [(Rockafellar, 1976, Theorem 3 and 3’)] Assume that Hypoth-
esis 1 and 2 hold.
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(1) For any a,b ∈ Rn we have that

EL
τ (a,b) = sup〈y(T+),b〉−〈y(τ−),a〉− Iτ(y)

EK
τ (a,b) = sup〈x(T+),b〉−〈x(τ−),a〉− Jτ(x)

where the supremum are taken over all y∈BV such that y(τ−), y(T+)∈
Y and over all x ∈ BV such that x(τ−), x(T+) ∈ X, respectively.

(2) For any a,b ∈ X we have that

EL
τ (a,b) = sup

y∈BV
〈y(T+),b〉−〈y(τ−),a〉− Iτ(y)

and if in addition (a,b) ∈ ri(dom(EL
τ )∩X×X)

EL
τ (a,b) = inf

x∈AC
{Jτ(x) | x(τ) = a, x(T ) = b}

(3) For any a,b ∈ Y we have that

EK
τ (a,b) = sup

x∈BV
〈x(T+),b〉−〈x(τ−),a〉− Jτ(x)

and if in addition (a,b) ∈ ri(dom(EK
τ )∩Y×Y)

EK
τ (a,b) = inf

y∈AC
{Iτ(y) | y(τ) = a, y(T ) = b}

4.1. Proof of Proposition 2.1. It is enough to check the inequality for ξ ∈
dom(ϑτ) and η ∈ Rn such that ωτ(η) < +∞, otherwise the conclusion is
straightforward (considering the convention +∞−∞ = +∞). Note that we
are not assuming a priori that ωτ(η) > −∞. Let ε > 0 and (x,u) ∈ AC×
L1

m(dt) be an ε-suboptimal solution to Problem 2.1. Since ωτ(η) < +∞

there is y ∈ AC feasible for Problem 2.2, that is, y(τ) = −η and (5) holds.
Note that, thanks to the Legendre-Fenchel inequality we have for a.e. on
[τ,T ]

( fP +δX)(x)+gP,X(ẏ+A∗y)≥ 〈x, ẏ+A∗y〉
( fR +δU)(u)+gR,U(B∗y)≥ 〈u,B∗y〉

Let ϕ(x,u,y) be the sum of costs in Problem 2.1 and Problem 2.2 associated
with x ∈ AC, u ∈ L1

m(dt) and y ∈ AC. By the dynamical constraint (2) we
get that

ϕ(x,u,y)≥
∫ T

τ

d
dt
〈x(t),y(t)〉dt + fQ(x(T ))+ fQ−1(y(T ))

Since ( fQ)
∗ = fQ−1 and fQ is even, the Legendre-Fenchel inequality leads

to
fQ(x(T ))+ fQ−1(y(T ))≥−〈x(T ),y(T )〉
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Hence, since y ∈ AC is an arbitrary feasible trajectory for Problem 2.2, it
follows that

ϑτ(ξ)+ωτ(η)+ ε≥ 〈x(τ),−y(τ)〉= 〈ξ,η〉
Letting ε→ 0+ the inequality on the statement follows. Moreover, if Hy-
pothesis 2 holds, then dom(ϑτ) 6= /0 and

ωτ(η)≥ 〈ξ,η〉−ϑτ(ξ)>−∞, ∀η ∈ Rn, ∀ξ ∈ dom(ϑτ)

Finally, if y ∈ AC is the trajectory given by Hypothesis 2, then ωτ(y(τ))<
+∞ for any τ ∈ [0,T ]. Consequently, ωτ is proper for any τ ∈ [0,T ] and the
proof is complete.

4.2. Proof of Theorem 2.1. In the light of (9), (10), (11) and (12), the
conclusion will follow from Theorem 2.2 combined with the facts that

V ext
τ (ξ) =Vτ(ξ), ∀ξ ∈ ri(dom(Vτ))

W ext
τ (η) =Wτ(η), ∀η ∈ ri(dom(Wτ))

We prove the first equation, the second one can be proved using symmetric
arguments, and so we skip it.

Note that for any ξ ∈ dom(Vτ) we have

V ext
τ (ξ) = inf

xT∈X
fQ(xT )+EL

τ (ξ,xT )

Hence, if ξ ∈ ri(dom(Vτ)) we have that

V ext
τ (ξ) = inf

xT∈Rn

(ξ,xT )∈ri(dom(EL
τ )∩X×X)

fQ(xT )+EL
τ (ξ,xT )

By point (2) in Lemma 4.1 we get that

V ext
τ (ξ) = inf

x∈AC, x(τ)=ξ

(ξ,x(T ))∈ri(dom(EL
τ )∩X×X)

fQ(x(T ))+ Jτ(x)

From where we get that V ext
τ (ξ) =Vτ(ξ) and so the conclusion follows and

the proof of the theorem is complete.

4.3. Proof of Theorem 2.2. Let τ ∈ [0,T ] be given. Thanks to (11) and
(12), in order to prove wext

τ = (ϑext
τ )∗ and vext

τ = (ωext
τ )∗, it is enough to

show that Wext
τ = (V ext

τ )∗ and Vext
τ = (W ext

τ )∗. Note that this also will prove
that vext

τ and wext
τ are lower semicontinuous, since they can be written as the

supremum of a family of affine functions.
Let us focus on Wext

τ = (V ext
τ )∗, the other one follows by symmetric ar-

guments. We begin by pointing out that

Wext
τ (η) = inf

yT∈Rn
fQ−1(yT )+EK

τ (−η,yT ), ∀η ∈ Rn
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Thus, thanks to point (1) in Lemma 4.1 we have

Wext
τ (η) = inf

yT∈Rn
sup

x∈BV
−Ψ(yT ,x)+ fQ−1(yT )

where Ψ : Rn×BV→ R∪{+∞} is defined via

Ψ(yT ,x) := Jτ(x)−〈x(τ−),η〉−〈x(T+),yT 〉

if x(τ−),x(T+)∈X and Ψ(yT ,x) :=+∞ otherwise. Note that yT 7→Ψ(yT ,x)−
fQ−1(yT ) is concave and finite, and also its levels sets are compact subsets of
Rn for any x ∈ dom(Jτ) with x(τ−),x(T+) ∈X. Furthermore, x 7→Ψ(yT ,x)
is convex for any yT ∈ Rn. Note that the subset of dom(Jτ) that satisfies
the additional condition x(τ−),x(T+) ∈ X is convex and nonempty thanks
to Hypotheses 1 and 2. Hence, in the light of the minimax theorem (Zali-
nescu, 2002, Theorem 2.10.2) we have that

Wext
τ (η) =− inf

x∈BV
sup

yT∈Rn
Ψ(yT ,x)− fQ−1(yT )

But, given x ∈ BV, we have that (since fQ−1 is even)

sup
yT∈Rn

〈x(T+),−yT 〉− fQ−1(yT ) = fQ(x(T+))

and so Wext
τ (η)

=− inf
x∈BV

x(τ−), x(T+)∈X

Jτ(x)−〈x(τ−),η〉+ fQ(x(T+))

=− inf
ξ∈X
−〈ξ,η〉+ inf

x∈BV
x(τ−)=ξ

Jτ(x)+( fQ +δX)(x(T+))

= sup
ξ∈X
〈ξ,η〉−V ext

τ (ξ) = (V ext
τ )∗(η)

Using similar arguments and point (3) in Lemma 4.1, we can show that
W ext

τ (η)= sup
ξ∈Rn
〈ξ,η〉−ψτ(ξ) where ψτ(ξ)= inf

x∈BV
x(τ−)=ξ

Jτ(x)+gQ−1,Y(−x(T+)).

Therefore, W ext
τ is lower semicontinuous, and since we know that it is

convex and proper (Lemma 2.4 combined with (12)), we get W ext
τ (η) =

(W ext
τ )∗∗(η) = (Vext

τ )∗(η).
Symmetric arguments (but using point (2) in Lemma 4.1) allow to show

that V ext
τ is lower semicontinuous, and since it is also convex and proper

(Lemma 2.3 combined with (11)), we obtain V ext
τ (ξ)= (V ext

τ )∗∗(ξ)= (Wext
τ )∗(ξ).

Finally, using (11) and (12), the conclusion follows.
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4.4. Proof of Corollary 2.1. Since ker(R)∩U∞ = {0}, by Lemma 1.1 we
get that Y=Rn, which in turns implies that vext

τ =ϑext
τ =ϑτ and wext

τ =ωext
τ .

In particular ϑτ is lower semicontinuous. Moreover, since ωext
τ = (ωτ)

∗∗ we
get that (wext

τ )∗ = (ωτ)
∗, and so the conclusion follows.

5. CONCLUSIONS AND FUTURE WORKS

We have shown that the value function of a LQ optimal control prob-
lem can be understood as the conjugate of the value function of a suitable
dual problem. We have exhibited that to describe the value function of a
constrained LQ problem, it’s required to extend such problems to BV arcs.
This in turn has shown that allowing jumps at the initial and final times is
essential in these problems.

The main purpose of establishing the results in this paper is to under-
stand the generalized characteristic methods proposed in Rockafellar and
Wolenski (2000) in the case of impulsive systems. Let us point out that, for
ξ ∈ ri(dom(ϑτ)), Theorem 2.1 leads to

η ∈ ∂ϑτ(ξ) ⇐⇒ ϑτ(ξ)+wext
τ (η) = 〈ξ,η〉

We expect value functions to be constant along optimal trajectories. If x ∈
AC and y∈BV are optimal for ϑτ(ξ) and wext

τ (η), respectively, the question
is whether or not y(t) ∈ ∂ϑτ(x(t)) and if (x,y) is a Hamiltonian trajectory
with final condition y(T+) = Qx(T+).

Finally, let us mention that, the results stated in this paper can be adapted
to time-dependent data, because the Lemma 4.1 holds as well. We have
chosen a time-independent presentation only for the sake of simplicity.
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