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Abstract. In this paper we provide sufficient optimality conditions for con-
vex optimal control problems with mixed constraints. On one hand, the data
delimiting the problem we consider is continuous and jointly convex on the
state and control variables, but on the other hand, smoothness on the data of
the problem, on the candidate to minimizer and/or on the multipliers are
not needed. We also show that, under a suitable interior feasibility con-
dition, the optimality conditions are necessary as well and can be written
as a Maximum Principle in normal form. The novelty of this last part is
that no additional regularity conditions on the mixed constraints, such as the
Mangasarian-Fromovitz constraint qualification or the bounded slope condi-
tion, are required. A discussion about the regularity of the costate is also
provided.

Keywords. Convex optimal control and Mixed constraints and Optimality condi-
tions and Maximum Principle

1. Introduction

Optimality conditions for control problems with mixed constraints have been
studied in a variety of settings. For example in [12], a Maximum Principle is
presented for a very general control problem with smooth data and regular mixed
constraints; see also [2, 4, 13, 5, 25, 1] for similar results. In [10, 8] nonsmooth
data is considered and the regularity condition takes the form of a bounded slope
condition; see also [17, 18] where the Mangasarian-Fromovitz condition is used
instead. Recently, in [6] smooth data is considered but the regularity condition is
dropped. There are also several works devoted to study second-order conditions;
see for instance [23, 33, 20, 9, 24] and the references therein.

In this paper, we study Linear-Convex control problems, which means that the
cost and constraints of the problem are jointly convex in the state and control
variables and the dynamics is jointly linear in the state and control variables. In this
context, optimality conditions can be derived using the duality theory developed
by Rockafellar in [28] for Bolza problems posed over absolutely continuous arcs and
later extended in [29] to cover arcs of bounded variation. According to this theory,
if an extremal process of the Bolza problem has a coextremal process associated,
then the extremal is a solution of the Bolza problem, the coextremal is a solution
to a properly defined dual Bolza problem and there is no duality gap. Therefore, to
derive optimality conditions for our control problem, we reformulate it as a convex
Bolza problem in order to use the tools in [28] and [29]. In doing so, the coextremals
play the role of the adjoint states (or costates), which are expected to have jumps at
the boundary of the region defined by the mixed constraints. Since the costates are
solutions to a dual problem as explained before, extending the admissible processes
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to cover arcs of bounded variation in the reformulated problem is a necessity in
order to derive meaningful optimality conditions for the original problem.

It is important to note the advantages and disadvantages of employing this du-
ality theory:

On one hand, we can prove sufficiency of the optimality conditions without
imposing smoothness on the data of the problem, on the candidate to minimizer
or/and on the multipliers. However, we need to restrict our attention to control
problems with convex data. Let us also mention that, as far as we are aware, the
study of (first order) sufficient optimality conditions for nonconvex problems with
mixed constraints dates back from the 60’s; see for instance [19] or the discussion
in [14, Section 8]. In these works, in order to make the Maximum Principle also
sufficient, besides smoothness on the data of the problem, additional regularity on
the costate multiplier is required (piecewise smoothness at least). As pointed out
above, in our setting no further regularity is demanded on the costate multiplier.
Actually, in Theorem 2.1 arcs of bounded variation are allowed and the assumptions
imposed are not related to the regularity of the multipliers, but to the structure of
the constraints.

On the other hand, we can derive necessary optimality conditions for problems
with mixed constraints without requiring any of the usual regularity conditions,
such as the Mangasarian-Fromovitz constraint qualification or the bounded slope
condition. Instead, we require a Slater type qualification condition and some coer-
civity assumption on the data of the problem. These assumptions also allow us to
guarantee the normality of the multipliers in our necessary conditions; that is, the
cost multiplier can be taken equal to 1. It is also noteworthy that these conditions
can be written as a Maximum Principle.

The organization of this paper is as follows. In Section 2, we present the problem
to be treated, the assumptions and the main theorems. In Section 3, we present
the duality approach we use to prove our main theorems and provide some inter-
mediate results required for proving our theorems. In Section 4, we provide the
proof of the main results, first the sufficiency and then the necessity of the optimal-
ity conditions. Finally, in Section 5 we make a short discussion about the results
we have presented in the paper, showing in particular an extension to problems
with multiple mixed constraints and commenting on the regularity of the costate
multiplier and its relation with the bounded slope condition. Also, an example is
provided to demonstrate our findings.

2. Statement of the Problem and Main Result

The optimal control problem we deal with in this paper is the following:

(Pχ0
)

!
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""""""""""""$

Minimize J(x, u) :=

% 1

0

ℓ(t, x(t), u(t))dt,

over all (x, u) ∈ AC([0, 1];Rn)× L∞([0, 1];Rm),
such that ẋ(t) = A(t)x(t) +B(t)u(t) + ϕ(t) a.e. on [0, 1],

f(t, x(t), u(t)) ≤ 0 a.e. on [0, 1],
ζ(t) = C(t)x(t) +D(t)u(t) a.e. on [0, 1],
x(t) ∈ K(t) on [0, 1],
u(t) ∈ U(t) a.e. on [0, 1],
x(0) = χ0.



OPTIMALITY CONDITIONS FOR LINEAR-CONVEX PROBLEMS 3

Here, ℓ, f : [0, 1] × Rn × Rm → R are given real-valued functions, ϕ : [0, 1] → Rn

is a given drift, χ0 ∈ Rn is a given initial condition, A(t), B(t), C(t) and D(t) are
n × n, n × m, l × n and l × m matrices for each t ∈ [0, 1] fixed, respectively, and
ζ : [0, 1] → Rl is a given arc. Also K : [0, 1] ⇒ Rn and U : [0, 1] ⇒ Rm are a
set-valued maps, representing the (pure) state constraints and the (pure) control
constraints, respectively.

Any pair (x, u) ∈ AC([0, 1];Rn) × L∞([0, 1];Rm) will be called a process, and
a process satisfying all the constraints defining (Pχ0) will be called an admissible
process. An optimal solution for (Pχ0) is an admissible process (x∗, u∗) such that
J(x∗, u∗) ≤ J(x, u) for all admissible processes (x, u).

2.1. Standing assumptions. Our task in this paper is to provide sufficient condi-
tions for an admissible process to be an optimal solution for (Pχ0). For this purpose,
the emphasis of this work is on Linear-Convex optimal control problems, in which
the running cost is a real-valued function, jointly convex in the state and control
variables, the dynamics is governed by an affine system, the mix constraint corre-
sponds to the sublevel set of some convex function and the (pure) state and (pure)
control constraints are convex sets at each instant of time. It is worth pointing out
that these problems cover for instance the so-called Linear Quadratic case.

To be more precise, the basic assumptions regarding the data of the problem of
concern are the following:

(A1) The functions ℓ, f , ϕ and ζ are all continuous on [0, 1]× Rn × Rm.
(A2) The matrix-valued maps t %→ A(t), t %→ B(t), t %→ C(t) and t %→ D(t) are

continuous on [0, 1].
(A3) For all t ∈ [0, 1] fixed, the sets K(t) and U(t) are closed, convex and

nonempty, with the multifunctions K and U having closed graph.
(A4) For all t ∈ [0, 1] fixed, the functions ℓ(t, ·) and f(t, ·) are convex.

Notation. In the future, when a function or a mapping depends on the variable
t, we sometimes denote this dependence with a subindex; for example, the function
ℓt represents the function (x, u) %→ ℓ(t, x, u) and Kt the set-valued map t %→ K(t).
Also, for a given convex function h : Rk → R ∪ {+∞}, as usual, ∂h(x) stands for
its (convex) subdifferential at x ∈ dom (h) and for a given convex set S ⊆ Rk, we
write NS (x) for the (convex) normal cone of S at the point x ∈ S and ri (S) for
its relative interior. If F : Rk ⇒ Ri is a multifunction, then gr (F ) stands for its
graph.

Given k ∈ N, we denote the Euclidean norm of a vector x ∈ Rk by |x| and the
inner dot of two vectors x, y ∈ Rk by 〈x, y〉. In our setting, an arc is a function
γ : [0, 1] → Rk. If M is a k × l matrix, then M∗ is the corresponding transpose
matrix. We denote by ACk = AC([0, 1];Rk) the space of absolutely continuous arcs,
L∞
k = L∞([0, 1];Rk) the space of essentially bounded arcs and BVk = BV ([0, 1];Rk)

the space of arcs of bounded variation; each of these spaces is equipped with their
usual norms. For n,m ∈ N given, we write Rn+m for the product space Rn × Rm

endowed with the Euclidean norm. For z ∈ BVk, we write z(0) and z(1) for the
left and right limits of z(t) at t = 0 and t = 1, respectively.

2.2. Main results. Before presenting our main result, let us introduce some defi-
nitions. Consider first for any t ∈ [0, 1] the set

Ω(t) := {(x, u) : ft(x, u) ≤ 0, ζt = Ctx+Dtu, x ∈ Kt, u ∈ Ut} .
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Consider as well for any t ∈ [0, 1] the set

X(t) := {x : ∃u ∈ Ut such that (x, u) ∈ Ω(t)},
which represents the actual state constraints present in (Pχ0) and the Lagrangian
L : [0, 1]× Rn+m × Rn+m → R ∪ {+∞} given by

(1) L(t, x, y, v, u) :=

&
ℓt(x, u) v = Atx+Btu+ ϕt, (x, u) ∈ Ω(t),

+∞ otherwise.

Under the assumptions we have done so far, it is not difficult to see that for any t ∈
[0, 1] fixed, Ω(t) is a closed convex set and Lt is a convex and lower semicontinuous
function. Moreover, for any t ∈ [0, 1] fixed it holds that

X(t)× Rm = {(x, y) : ∃(v, u) such that Lt(x, y, v, u) < ∞}.
Furthermore, we can also see that L is lower semicontinuous function jointly in all
its variable, therefore as pointed out in [30, Example 14.30], L is a Lebesgue-normal
integrand in the sense of [30, Definition 14.27].

In addition to the basic assumptions we have done up to now, we will require the
following technical conditions for ensuring that X is a set-valued map with closed
graph and also that the Lagrangian is bounded below.

(A5) There is an upper semicontinuous function ψ : [0, 1]× Rn → R such that

sup
u∈Ut

{|u| : ft(x, u) ≤ 0} ≤ ψ(t, x), ∀(t, x) ∈ gr (K) .

(A6) There is κ0 ∈ R and a function ρ : [0, 1]×Rm → R such that ρ(·, 0) is upper
semicontinuous and

sup
(x,u)∈Ω(t)

{|x| : ℓt(x, u)− 〈z, u〉 ≤ κ0} ≤ ρ(t, z), ∀z ∈ Rm, t ∈ [0, 1].

Remark 2.1. Notice that (A5) and (A6) hold in several situations of interest. For
example, they are straightforward if Kt × Ut ⊆ S, for any t ∈ [0, 1] with S being a
compact subset of Rn+m.

A noteworthy case when (A5) holds is when

ft(x, u) = r(t, x) + s(t, u)

with s satisfying a coercivity condition of the form s(t, u) ≥ c(t)(1 + |u|k) for some
continuous positive function c : [0, 1] →]0,+∞[ and some k ∈ N. Notice too that
(A6) holds if for example

ℓt(x, u) ≥ h(t, x, u) + |x|α + γ|u|β

for some continuous bounded below function h : [0, 1] → R, α ≥ 1, β > 1 and γ > 0,
that is, if ℓ is coercive in u and has (at least) linear growth in x.

Remark 2.2. From the assumptions we have done so far it also follows that

inf
t∈[0,1]

inf
(x,u)∈Ω(t)

ℓ(t, x, u) > −∞

If it were not the case, for any k ∈ N there would be some tk ∈ [0, 1] and (xk, uk) ∈
Ω(tk) such that ℓ(tk, xk, uk) → −∞. Passing into a subsequence if necessary, let
us assume that tk → t for some t ∈ [0, 1]. Thus, for k ∈ N large enough by (A6)
we would have that |xk| ≤ ρ(tk, 0) and by (A5) we would have |uk| ≤ ψ(tk, xk).
Therefore, xk and uk are uniformly bounded, and without loss of generality we may
assume there are x ∈ Rn and u ∈ Rm such that xk → x and uk → u. By continuity
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of the data (assumptions (A1) to (A3)), it follows that ℓ(tk, xk, uk) → ℓ(t, x, u) as
well as (x, u) ∈ Ω(t), which leads to a contradiction. In particular, it follows that
for any measurable arcs x, v : [0, 1] → Rn and y, u : [0, 1] → Rm, we have

% 1

0

L(t, x(t), y(t), v(t), u(t))dt > −∞.

Recall that any arc of bounded variation z ∈ BVk induces a Borel measure dz(t)
which has a Lebesgue decomposition of the form

dz(t) = ż(t)dt+ ξz(t)dθ(t),

where ż(t) and ξz(t) are the densities associated with the absolutely continuous and
singular part of the measure dz(t) (with respect to the Lebesgue measure). Here
θ is a given a singular (regular) measure with respect to the Lebesgue measure on
[0, 1], which remains fixed from this point onward.

Now we are in a position to present the first results of this paper which provides
sufficient conditions for a process to be an optimal solution of (Pχ0

).

Theorem 2.1. Suppose that

(H) ri (Kt)× ri (Ut)
'

{(x, u) : ft(x, u) < 0} ∕= ∅, for a.e. t ∈ [0, 1].

Let (x, u) be an admissible process for (Pχ0
) for which there exist an arc p ∈ BVn,

a nonnegative measurable function µ : [0, 1] → [0,+∞[ and a measurable arc λ :
[0, 1] → Rl satisfying the following conditions:

(i) p(1) = 0;
(ii) µ(t)f(t, x(t), u(t)) = 0 for a.e. t ∈ [0, 1];
(iii) for a.e. t ∈ [0, 1]

(
ṗ(t) +A∗

t p(t)− C∗
t λ(t)

B∗
t p(t)−D∗

t λ(t)

)
∈ ∂ℓt(x(t), u(t)) + µ(t)∂ft(x(t), u(t)) +

(
NKt (x(t))
NUt

(u(t))

)
.

(iv) ξp(t) ∈ NX(t) (x(t)) dθ-a.e.

Then, (x, u) is a solution for (Pχ0).

Remark 2.3. It is noteworthy that if ℓt and ft are both smooth function and
there are no state constraints, then the conditions in Theorem 2.1 correspond to the
smooth Maximum Principle for problems with mixed constraints. It is enough to
see that (iii) in Theorem 2.1 is equivalent to costate equation

(2) − ṗ(t) = ∇xH(t, x(t), u(t), p(t),λ(t), µ(t))

and first order optimality condition

(3) 0 ∈ −∇uH(t, x(t), u(t), p(t),λ(t), µ(t)) +NUt (u(t)) ,

where

H(t, x, u, p,λ, µ) := 〈Atx+Btu+ϕt, p〉 − ℓt(x, u)− 〈Ctx+Dtu− ζt,λ〉 − µft(x, u).

By convexity, we get that (3) is equivalent to the maximality condition

(4) H(t, x(t), u(t), p(t),λ(t), µ(t)) = max
u∈Ut

H(t, x(t), u, p(t),λ(t), µ(t)).
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The strategy we use to prove Theorem 2.1 relies on Rockafellar’s duality theory
for convex problems of Bolza type; see for instance [28, 29]. In this approach, the
Bolza problem is paired with a dual problem which has the same structure as the
primal one. The underlying convex structure of the problem is what provides the
sufficiency of the conditions in Theorem 2.1.

In the next section we develop the main core of the strategy described above. In
particular, we introduce an auxiliary convex problem of Bolza type, which encloses
all the information of the optimal control problem of concern.

Our second result establishes that the sufficient conditions in Theorem 2.1 are
also necessary when an additional Slater type qualification condition holds.

Theorem 2.2. Suppose that Ct = 0 for all t ∈ [0, 1] and that there exists a process
(x̄, ū) and r0 > e‖A‖∞ |χ0 − x̄(0)| such that

(H’)

!
"""""""#

"""""""$

˙̄x(t) = A(t)x̄(t) +B(t)ū(t) + ϕ(t) a.e. on [0, 1],

ess− sup
t∈[0,1]

ft(x̄(t), ū(t)) < 0

ζ(t) = D(t)ū(t) a.e. on [0, 1],

BRn(x̄(t), r0) ⊆ Kt on [0, 1],

ū(t) ∈ Ut a.e. on [0, 1].

Asume in addition that there is κℓ > 0 such that

|ℓt(x, u)− ℓt(y, v)| ≤ κℓ(|x− y|+ |u− v|), ∀x, y ∈ Rn u, v ∈ Rm, t ∈ [0, 1].

Let (x∗, u∗) be a solution for (Pχ0
) and assume that (H) holds also. Then, there

exist an arc p ∈ BVn, a nonnegative measurable function µ : [0, 1] → [0,+∞[ and
a measurable arc λ : [0, 1] → Rl satisfying the conditions of Theorem 2.1.

Remark 2.4. It is pertinent to note that from Theorem 2.2 one can obtain a
nonsmooth Maximum Principle in normal form. Indeed, notice first that

∂ℓt(x̂, û) ⊆ ∂xℓt(x̂, û)× ∂uℓt(x̂, û) and ∂ft(x̂, û) ⊆ ∂xft(x̂, û)× ∂uft(x̂, û),

where ∂xh(x̂, û) and ∂uh(x̂, û) stand for the subdifferential of the functions h(·, û)
at x = x̂ and h(x̂, ·) at u = û, respectively.

Therefore, from condition (iii) in Theorem 2.1 we can obtain

(5) ṗ(t) +A∗
t p(t)− C∗

t λ(t) ∈ ∂xℓt(x(t), u(t)) + µ(t)∂xft(x(t), u(t)) +NKt (x(t)) ,

(6) B∗
t p(t)−D∗

t λ(t) ∈ ∂uℓt(x(t), u(t)) + µ(t)∂uft(x(t), u(t)) +NUt
(u(t)) .

Similarly as in Remark 2.3, here (5) is the costate equation and (6) leads to the
maximality condition. Notice that, if we set H is as in Remark 2.3, then (5) and
(6) can be written as

−ṗ(t) ∈ ∂xH(t, x(t), u(t), p(t),λ(t), µ(t))−NKt
(x(t))

and

0 ∈ −∂uH(t, x(t), u(t), p(t),λ(t), µ(t)) +NUt
(u(t)) ,

respectively, where ∂xH(t, x̂, û, p̂, λ̂, µ̂) and ∂uH(t, x̂, û, p̂, λ̂, µ̂) are the negative of

the subdifferential of the convex functions −H(t, ·, û, p̂, λ̂, µ̂) at x = x̂ and −H(t, x̂, ·, p̂, λ̂, µ̂)
at u = û. Since H is a concave function on the variable u, the last inclusion is
equivalent to the maximality condition (4).
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Remark 2.5. Notice the if ū in (H’) also satisfied that ū(t) ∈ ri (Ut) a.e. on
[0, 1], then (H) holds immediately. However, in general we do not enforce that.
It should also be pointed out that if no pure state constraints are considered (i.e.
Kt ≡ Rn), then x̄(0) in (H’) is free and does not need to be related with χ0. Also,
since r0 > |χ0 − x̄(0)|, it follows that (H’) implies that χ0 ∈ int (K0).

Remark 2.6. It is well known that for problem with (pure) state constraints, the so-
called inward pointing condition (IPC), allows to ensure normality of the Maximum
Principle; see for instance [3] and the reference therein. As pointed out in Remark
2.4, Theorem 2.2 leads as well to a Maximum Principle in normal form, however
by considering a less restrictive condition than the IPC; conditions such as the IPC
implies (H’) as has been shown in [7, Theorem 1]. As a matter of fact, the optimal
control problem considered in Example 5.1 at the end of the paper satisfies (H’) but
not the IPC; see also Remark 5.1.

3. The Auxiliary Problem and its Dual

As pointed out in [16], when state constraints are present in convex optimal
control problems, these problems can be formulated as convex problems of Bolza
type over arcs of bounded variation rather than over absolutely continuous ones.
Considering this, we introduce for any given pair (x, y) ∈ BVn+m the cost functional

JL(x, y) :=

% 1

0

Lt(x(t), y(t), ẋ(t), ẏ(t))dt+

% 1

0

RL(t, ξx(t), ξy(t))dθ(t),

where L is the Lagrangian given by (1) and RL : [0, 1]×Rn+m → R∪ {+∞} is the
(partial) recession function (see for instance [27, Theorem 8.5]) given by

RL(t, dx, dy) := sup
(x,y,v,u)∈dom(Lt)

Lt(x, y, v + dx, u+ dy)− Lt(x, y, v, u).

The auxiliary problem we need for proving our main result is the following

(P) min JL(x, y), over all the pair (x, y) ∈ BVn+m.

The underlying idea is the following; if (x, u) is an admissible process for (Pχ0)
satisfying the conditions of Theorem 2.1, then, to this admissible process, one can
associate an optimal solution for (P). A posteriori, one can use problem (P) as a
pivot for testing the optimality of the admissible process (x, u).

Following [29], in order to write (sufficient and necessary) optimality conditions
for (P), we need to construct a suitable dual problem to (P). Thus, we introduce a
dual Lagrangian M : [0, 1]× Rn+m × Rn+m → R ∪ {+∞} given by

M(t, p, q, r, s) := sup
x,y,v,u

{〈p, v〉+ 〈q, u〉+ 〈r, x〉+ 〈s, y〉 − Lt(x, y, v, u)}.

Notice that Mt(p, q, r, s) = +∞ if s ∕= 0 and otherwise

(7) Mt(p, q, r, 0) = sup
(x,u)∈Ω(t)

{〈A∗
t p+ r, x〉+ 〈B∗

t p+ q, u〉 − ℓt(x, u)}+ 〈p,ϕt〉.

The dual problem to (P) we consider in this paper is then defined as follows:

(D) min JM (x, y), over all the pair (p, q) ∈ BVn+m,

where, for a given pair (p, q) ∈ BVn+m we have

JM (p, q) =

% 1

0

Mt(p(t), q(t), ṗ(t), q̇(t))dt+

% 1

0

RM (t, ξp(t), ξq(t))dθ
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and, as before, RM (t, ·, ·) is the recession function given by

RM (t, dp, dq) := sup
(p,q,r,0)∈dom(Mt)

Mt(p, q, r + dp, dq)−Mt(p, q, r, 0).

3.1. State constraints. Let us point out that the primal problem (P) has some
implicit (time dependent) state constraints associated, which are given by

SL(t) := {(x, y) : ∃(v, u) such that Lt(x, y, v, u) < ∞}, ∀t ∈ [0, 1].

As we have already discussed, we have the relation

X(t)× Rm = SL(t), ∀t ∈ [0, 1].

Under the assumption we have done so far, it follows that the set-valued map SL

has closed graph.

Lemma 3.1. The multifunction X : [0, 1] ⇒ Rn has closed graph. In particular,
gr

*
SL

+
is closed as well.

Proof. Take a convergent sequence (tk, xk) → (t, x) with xk ∈ X(tk) for all k. Then,
by the definition of X, there exists a sequence uk ∈ U(tk) satisfying f(tk, xk, uk) ≤
0. Thanks to (A5), it follows that

|uk| ≤ ψ(tk, xk), ∀k ∈ N.
Since, ψ is upper semicontinuous, it follows that the sequence uk is bounded, and so,
taking a subsequence if necessary, we can find u ∈ Rm such that (tk, uk) → (t, u).
Since U has closed graph, we conclude that u ∈ U(t). Finally, the continuity of
f and ζ together with the continuity of the matrix-valued maps s %→ C(s) and
s %→ D(s), imply that (t, x) does belong to gr (X). □ □

In a general setting, the dual problem (D) may have as well some (non-trivial)
implicit state constraints associated, which in this case would be

SM (t) := {(p, q) : ∃(r, s) such that Mt(p, q, r, s) < ∞}.
Nevertheless, under the compactness assumption (A6) we are considering in this
work, the dual state constraints turns out to be the whole state space Rn+m and
can be disregarded as the next results shows.

Lemma 3.2. SM (t) = Rn+m for all t ∈ [0, 1] fixed.

Proof. Notice first that for any (p, q) ∈ Rn+m, by (7) we have

Mt(p, q,−A∗
t p, 0) = sup

(x,u)∈Ω(t)

{〈B∗
t p+ q, u〉 − ℓt(x, u)}+ 〈p,ϕt〉.

Let us check that the supremum above is finite for any (p, q) ∈ Rn+m. Suppose by
contradiction that Mt(p, q,−A∗

t p, 0) = +∞ for some (p, q) ∈ Rn+m. Then, there is
a sequence (xk, uk) ∈ Ω(t) such that

ℓt(xk, uk)− 〈B∗
t p+ q, uk〉 → −∞.

Notice that xk is uniformly bounded. Indeed, since (xk, uk) ∈ Ω(t) for any k ∈ N
and ℓt(xk, uk) − 〈B∗

t p + q, uk〉 ≤ κ0 for k ∈ N large enough, by (A6) we get for
k ∈ N large enough

|xk| ≤ ρ(t, B∗
t p+ q).

Thus, by (A5) we get that uk is uniformly bounded because we also have for k ∈ N
large enough that |uk| ≤ ψ(t, xk). Thus, passing into a subsequence if necessary,
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we can assume there is (x̄, ū) ∈ Rn+m such that (xk, uk) → (x̄, ū). Since Ω(t) is a
closed set, we actually get that (x̄, ū) ∈ Ω(t) and by continuity of ℓ we get that

ℓt(xk, uk)− 〈B∗
t p+ q, uk〉 → ℓt(x̄, ū)− 〈B∗

t p+ q, ū〉 ∈ R,

which is not possible. Therefore, Mt(p, q,−A∗
t p, 0) ∈ R, which leads to the conclu-

sion. □ □

Remark 3.1. It is well known that RL(t, dx, dy) = σSM (t)(dx, dy), where σS stands
for the support function of a set S; see for instance [27, Theorem 13.3]. This means
that RL(t, dx, dy) ∈ R if and only if (dx, dy) = 0, and so, any feasible arc for (P)
must be an absolutely continuous arc, because an arc in order to be feasible needs
to satisfy

RL(t, ξx(t), ξy(t)) = 0, dθ − a.e. on [0, 1].

The latter being a consequence of the fact that σSM (t) is either 0 or +∞.

3.2. Optimality Conditions. The following definitions taken from [29] are im-
portant concepts that arise in the study of optimality conditions for (P) and (D).
These definitions have been adapted for the case we are treating in this paper,
that is, absolutely continuous solutions for (P) and no state constraints on the dual
problem (D).

Definition 3.1. A pair (x, y) ∈ ACn+m is called an extremal for L if there is a
pair (p, q) ∈ BVn+m, called a coextremal for (x, y), such that they satisfy:

(i) x(t) ∈ X(t) for all t ∈ [0, 1];
(ii) (ξp(t), ξq(t)) ∈ NX(t) (x(t))× {0} for dθ-a.e. t ∈ [0, 1];
(iii) (−ṗ(t),−q̇(t), ẋ(t), ẏ(t)) ∈ ∂Ht(x(t), y(t), p(t), q(t)), where the function H

is the Hamiltonian given by

H(t, x, y, p, q) := sup
v,u

{〈p, v〉+ 〈q, u〉 − Lt(x, y, v, u)},

and ∂Ht stands for the concave-convex subdiferential (see [27, Chapter 35])
of the function

((x, y), (p, q)) %→ Ht(x, y, p, q).

Remark 3.2. According to the definition of the Lagrangian (1), the Hamiltonian
associated with problem (P) is given by

Ht(x, y, p, q) = sup
u

{〈B∗
t p+ q, u〉 − ℓt(x, u) : (x, u) ∈ Ω(t)}+ 〈p,Atx+ ϕt〉.

Thus, if x /∈ Kt, then {u : (x, u) ∈ Ω(t)} = ∅ and so Ht(x, y, p, q) = −∞.

Define now the value functions ϑL, ϑM : Rn+m×Rn+m → R∪{+∞} associated
with (P) and (D) respectively, by

ϑL(x0, y0, x1, y1) := inf
(x,y)∈ACn+m

,
JL(x, y) :

(x(0), y(0)) = (x0, y0)
(x(1), y(1)) = (x1, y1)

-

and

ϑM (p0, q0, p1, q1) := inf
(p,q)∈BVn+m

,
JM (p, q) :

(p(0), q(0)) = (p0, q0)
(p(1), q(1)) = (p1, q1)

-
.

Notice that an optimal solution (x, y) for problem (P) satisfies

JL(x, y) = ϑL(x(0), y(0), x(1), y(1)).
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Similarly, an optimal solution (p, q) for problem (D) satisfies

JM (p, q) = ϑM (p(0), q(0), p(1), q(1)).

Definition 3.2. We say that (x0, y0, x1, y1) and (p0, q0, p1, q1) are endpoints in
duality if x0 ∈ X(0), x1 ∈ X(1) and it also holds that

ϑL(x0, y0, x1, y1) + ϑM (p0, q0, p1, q1) = 〈x1, p1〉+ 〈y1, q1〉 − 〈x0, p0〉 − 〈y0, q0〉.
Theorem 2 in [29] derives necessary and sufficient conditions for (x, y) and (p, q)

to be optimal pairs for problem (P) and (D), respectively. This result will be our
vehicle to derive sufficient optimality conditions for problem (Pχ0).

Lemma 3.3. Suppose that JL(x, y) and JM (p, q) are not oppositely infinite. Then,
the following statements are equivalent:

(i) (x, y) is an extremal for L with coextremal (p, q);
(ii) (x, y) is optimal for (P), (p, q) is optimal for (D) and (x(0), y(0), x(1), y(1))

and (p(0), q(0), p(1), q(1)) are endpoints in duality.

Proof. This is a direct consequence of [29, Theorem 2] and the fact that the SL and
SM have both closed graph by Lemma 3.1 and Lemma 3.2, respectively. □ □
3.3. The Hamiltonian inclusion. The following lemma proves that the Hamil-
tonian inclusion in Definition 3.1 is equivalent to the existence of measurable multi-
pliers satisfying a costate equation involving the subdifferential of a pre-Hamiltonian
function and the normal cone of the multifunction U and complementary slackness
conditions.

Lemma 3.4. Suppose that (H) holds and let us consider some measurable arcs
x, v, p, r : [0, 1] → Rn and y, u, q, s : [0, 1] → Rm. Then

(8) (−r(t),−s(t), v(t), u(t)) ∈ ∂Ht(x(t), y(t), p(t), q(t)), a.e. t ∈ [0, 1]

if and only if s(t) = 0 a.e. on [0, 1] and there exist a nonnegative measurable
function µ : [0, 1] → [0,+∞[ and a measurable arc λ : [0, 1] → Rl satisfying:

(1) µ(t)f(t, x(t), u(t)) = 0 a.e. on [0, 1];
(2) for a.e. t ∈ [0, 1]

(
r(t) +A∗

t p(t)− C∗
t λ(t)

q(t) +B∗
t p(t)−D∗

t λ(t)

)
∈ ∂ℓt(x(t), u(t)) + µ(t)∂ft(x(t), u(t)) +

(
NKt (x(t))
NUt

(u(t))

)

Proof. Notice first that if x, v, p, r ∈ Rn and y, u, q, s ∈ Rm are given vectors, then
[27, Theorem 37.5] implies that

(−r,−s, v, u) ∈ ∂Ht(x, y, p, q)

is equivalent to
(r, s, p, q) ∈ ∂Lt(x, y, v, u).

Since ℓt is continuous and Ω(t) ∕= ∅, by [27, Theorem 23.8] we have

∂Lt(x, y, v, u) =
.
(r, 0, 0, q) : (r, q) ∈ ∂ℓt(x, u) +NΩ(t)(x, u)

/
+NΓ(t)(x, y, v, u),

where Γ(t) := {(x, y, v, u) : v = Atx+Btu+ ϕt}. It is not difficult to see that

NΓ(t) (x, y, v, u) = {(A∗
t z, 0,−z,B∗

t z) : z ∈ Rn} , ∀(x, y, v, u) ∈ Γ(t).

Also, since for any t ∈ [0, 1], there is (x̄, ū) ∈ ri (Kt)× ri (Ut) such that ft(x̄, ū) < 0,
by [27, Corollary 23.8.1] we have that

NΩ(t) (x, u) = NKt (x)×NUt (u) +N{ft≤0} (x, u) + {(C∗
t λ, D

∗
t λ) : λ ∈ Rl}.
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Notice too that thanks to [27, Corollary 23.7.1] we have

N{ft≤0} (x, u) = {(r, q) ∈ µ∂ft(x, u) : µ ≥ 0, µft(x, u) = 0} .
Therefore, (8) is equivalent to s(t) = 0 for a.e. t ∈ [0, 1] and

(
r(t)
q(t)

)
∈ ∂ℓt(x(t), u(t))−

(
A∗

t p(t)
B∗

t p(t)

)
+

(
NKt (x(t))
NUt

(u(t))

)

+N{ft≤0} (x(t), u(t)) +

,(
C∗

t λ
D∗

t λ

)
: λ ∈ Rl

-
, a.e. t ∈ [0, 1].

From here it is easy to see that the if implication of the lemma holds true. Let us
now focus on the only if implication, which essentially requires us to justify that
some suitable measurable selections exist.

Let us consider the set

U(t) := ∂ℓt(x(t), u(t))×NKt×Ut (x(t), u(t))× [0,+∞[×∂ft(x(t), u(t))× Rl,

the measurable function

ν(t) :=

(
r(t) +A∗

t p(t)
q(t) +B∗

t p(t)

)
,

and, for t ∈ [0, 1], µ ∈ [0,+∞[, ξ, η, γ ∈ Rn+m and λ ∈ Rl, the continuous mapping

g(t, (ξ, η, µ, γ,λ)) := ξ + η + µγ +

(
C∗

t λ
D∗

t λ

)

and the Caratheodory mapping

h(t, (ξ, η, µ, γ,λ)) := µft(x(t), u(t)).

Notice that if (8) holds true, then for a.e. t ∈ [0, 1] we also have

U ′(t) :=

,
(ξ, η, µ, γ,λ) ∈ U(t) : g(t, (ξ, η, γ,λ)) = ν(t)

h(t, (ξ, η, γ,λ)) = 0

-
∕= ∅.

Moreover, by [30, Theorem 14.26] and [30, Theorem 14.56], we have that U defines a
measurable set-valued map with closed images. Thus, by the Generalized Filippov
Selection Theorem [31, Theorem 2.3.13], there are measurable functions ξ, η, γ :
[0, 1] → Rn+m, µ : [0, 1] → [0,+∞[ and λ : [0, 1] → Rl such that the following holds
for a.e. t ∈ [0, 1]

ξ(t) ∈ ∂ℓt(x(t), u(t)), η(t) ∈ NKt×Ut
(x(t), u(t)) and γ(t) ∈ ∂ft(x(t), u(t)),

(
r(t) +A∗

t p(t)
q(t) +B∗

t p(t)

)
= ξ(t) + η(t) + µ(t)γ(t) +

(
C∗

t λ(t)
D∗

t λ(t)

)
.

and µ(t)ft(x(t), u(t)) = 0. This completes the proof of the lemma. □ □

4. Proof of the main results

4.1. Proof of Theorem 2.1. We have now all the tools needed for proving The-
orem 2.1.

Theorem 2.1. Our vehicle to prove this result will be Lemma 3.3. First, we show
that the existence of multipliers (p, µ,λ) satisfying the conditions in Theorem 2.1
implies that (x, y) is an extremal for L with coextremal (p, q), in the sense of

Definition 3.1, where y(t) =
0 t

0
u(s)ds and q(t) = 0.
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Notice that condition (i) in Definition 3.1 is a direct consequence of (x, u) being
admissible for (Pχ0

) and (ii) in Definition 3.1 is straightforward from the assump-
tions and the definition of q. On the other hand, the Hamiltonian condition (iii) in
Definition 3.1 follows directly from Lemma 3.4.

Now, let us check that JL(x, y) and JM (p, q) are not oppositely infinite. It will
be enough to see that JL(x, y) ∈ R. First, since (x, u) is admissible for (Pχ0), it
follows that for a.e. t ∈ [0, 1] we have

ẏ(t) = u(t), ẋ(t) = A(t)x(t) +B(t)u(t) + ϕ(t) and (x(t), u(t)) ∈ Ω(t).

Therefore, it is not difficult to see that

JL(x, y) =

% 1

0

Lt(x(t), y(t), ẋ(t), ẏ(t))dt =

% 1

0

ℓt(x(t), u(t))dt.

Now, thanks to (A5), it follows that

|u(t)| ≤ ψ(t, x(t)), for a.e. t ∈ [0, 1].

Since, ψ is upper semicontinuous and x ∈ ACn, it follows that u ∈ L∞
m , and so due

to the continuity of ℓ we get that t %→ ℓt(x(t), u(t)) is integrable, which implies that
JL(x, y) ∈ R.

This observation allows the use of Lemma 3.3 to deduce that (x, y) is optimal
for L, (p, q) is optimal for M and the endpoints are in duality, that is,

ϑL(x(0), y(0), x(1), y(1)) + ϑM (p(0), q(0), p(1), q(1))

= 〈x(1), p(1)〉+ 〈y(1), q(1)〉 − 〈x(0), p(0)〉 − 〈y(0), q(0)〉.

Since, by assumption p(1) = 0 and by definition y(0) = q(0) = q(1) = 0 and
x(0) = χ0, the above equality implies

(9) JL(x, y) + JM (p, q) = −〈χ0, p(0)〉.
Next, define the functions

gL(x0, y0) := inf{JL(z, v) : (z, v) ∈ BVn+m, (z(0), v(0)) = (x0, y0)},
gM (p0, q0) := inf{JM (r, s) : (r, s) ∈ BVn+m, (r(0), s(0)) = (−p0,−q0)}.

Thanks to [16, Proposition 3.1] it follows that

gL(x0, y0) + gM (p0, q0) ≥ 〈x0, p0〉+ 〈y0, q0〉
for all (x0, y0), (p0, q0) ∈ Rn+m. Thus, by (9) and the above inequality we get

gL(χ0, 0) + gM (−p(0), 0) ≥ −〈χ0, p(0)〉 = JL(x, y) + JM (p, q),

which implies that

gL(χ0, 0) + gM (−p(0), 0) = JL(x, y) + JM (p, q)

or, equivalently,

0 ≥ gL(χ0, 0)− JL(x, y) = JM (p, q)− gM (−p(0), 0) ≥ 0.

We conclude that gL(χ0, 0) = JL(x, y) and gM (−p(0), 0) = JM (p, q). Hence

JL(x, y) = inf{JL(z, v) : (z, v) ∈ BVn+m, (z(0), v(0)) = (χ0, 0)}.(10)

Finally, to prove that (x, u) is indeed a solution for (Pχ0
), take any admissible

pair (z, v) for this problem and set w =
0 t

0
v(t)dt. Then, (z(0), w(0)) = (χ0, 0) and
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JL(z, w) =
0 1

0
ℓt(z(t), v(t))dt by the admissibility and absolute continuity of (z, w).

Thus, by (10) we have
% 1

0

ℓt(x(t), u(t)) = JL(x, y) ≤ JL(z, w) =

% 1

0

ℓt(z(t), v(t))dt

proving that (x, u) is in fact optimal. □ □

4.2. Necessary Conditions. Let us now focus on the necessary conditions. Let

(x∗, u∗) be an optimal solution for (Pχ0
), and let us define y∗(t) =

% t

0

u∗(s)ds for

any t ∈ [0, 1].
One possible strategy to prove this is using Lemma 3.3. Notice that if (x, y) is op-

timal for (P), to use Lemma 3.3 we need to prove the existence of (p, q) ∈ BVn+m, an
optimal solution for (D), such that (x(0), y(0), x(1), y(1)) and (p(0), q(0), p(1), q(1))
are endpoints in duality. Our main tool for doing so will be [16, Theorem 3.8] ap-
plied to the Bolza problem

(P(x0,y0))

&
Minimize JΛ(x, y) + g(x(1), y(1)) over all (x, y) ∈ BVn+m

such that (x(0), y(0)) = (x0, y0),

where

g(x, y) :=
1

2
|x− x∗(1)|2 + 1

2
|y − y∗(1)|2

and Λ : [0, 1]× Rn+m × Rn+m → R ∪ {+∞} given by

(11) Λ(t, x, y, v, u) := L(t, x, y, v, u) +
1

2
|y − y∗(t)|2 .

Recall that, since L is a lower semicontinuous function thanks to assumption
(A1) to (A3), it is a Lebesgue-normal integrand, and so it is Λ. Also, it is not
difficult to see that Hamiltonian and the dual Lagrangian associated with Λ are
given by the expression

(t, p, q, r, s) %→ H(t, x, y, p, q)− 1

2
|y − y∗(t)|2

and

(t, p, q, r, s) %→ M(t, p, q, r, 0) +
1

2
|s2|+ 〈s, y∗(t)〉,

respectively. Let us also point out that Lemmas 3.1, 3.2 and assumption (A1) to
(A6) guarantee that Hypotheses 2.1 and 2.21 in [16] are verified; see also Remark
2.2. Notice also that if Ct = 0 for any t ∈ [0, 1] and (H’) holds, then [16, Hypotheses
3.2] is verified with (x̄, ȳ) for the primal problem and (p̄, q̄) = (0, 0) for the dual

problem, where ȳ(t) =

% t

0

ū(s)ds for any t ∈ [0, 1]. Indeed, if g∗ denotes the

Fenchel conjugate of g, then it is enough to note that dom (g) = dom (g∗) = Rn+m,
x̄(t) ∈ int (X(t)) for any t ∈ [0, 1],

JΛ(x̄, ȳ) =

% 1

0

ℓ(t, x̄(t), ū(t))dt+

% 1

0

|ȳ(t)− y∗(t)|2 dt and JM (0, 0) = 0.

Moreover, the following lemma shows that [16, Hypotheses 3.4] also holds.

1It is important to highlight that in [16, Hypotheses 2.2] the upper semicontinuity is understood
in the same sense as in [29], that is, the multifunctions have closed graphs.
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Lemma 4.1. For every (x, y) ∈ int (X(t)) × Rm and (p, q) ∈ Rn+m, the function
t %→ H(t, x, y, p, q) is integrable in [0, 1].

Proof. Take a fixed element (x, y) ∈ int (X(t))×Rm and (p, q) ∈ Rn+m. In partic-
ular, x ∈ Kt and so, by Remark 3.2 we have

Ht(x, y, p, q) = sup
u

{〈B∗
t p+ q, u〉 − ℓt(x, u) : (x, u) ∈ Ω(t)}+ 〈p,Atx+ ϕt〉.

Furthermore, by (A5) we have

sup{|u| : (x, u) ∈ Ω(t)} ≤ sup{|u| : u ∈ Ut, ft(x, u) ≤ 0} ≤ ψ(t, x).

Since ψ is upper semicontinuous, the mapping t %→ ψ(t, x) is bounded on [0, 1].
Therefore, the inequality above, together with (A1) and (A2), implies that the
mapping t %→ H(t, x, y, p, q) is bounded in [0, 1], and therefore, it is integrable. □

□
Having checked that the assumptions in [16, Theorem 3.8] are satisfied, we are

now in a position to derive the necessary conditions.

Theorem 2.2. For any (x0, y0) ∈ Rn+m, let V (x0, y0) be the value of the problem
(P(x0,y0)). Notice that by Remark 3.1, any feasible arc for (P(x0,y0)) must belong to
ACn+m. Also, since (x∗, u∗) is an optimal solution for (Pχ0), it follows that (x

∗, y∗)
is the unique solution to (P(x0,y0)) when (x0, y0) = (χ0, 0). Moreover

V (χ0, 0) =

% 1

0

ℓt(x
∗(t), u∗(t))dt ∈ R.

Notice that if ∂V (χ0, 0) ∕= ∅, then [16, Theorem 3.8] combined with Lemma 3.4
yields the existence of p ∈ BVn with the desired properties. Indeed, by [16, Theorem
3.8] one get that if (η, γ) ∈ ∂V (χ0, 0) then there exists an extremal (x, y) ∈ ACn+m

for L and a coextremal (p, q) ∈ BVn+m such that

−p(1) = x(1)− x∗(1) and − q(1) = y(1)− y∗(1).

It is worth pointing out that, thanks to Lemma 3.3 and the transversality condition,
it follows that (x, y) is also an optimal solution (P(x0,y0)). From where we deduce
that (x, y) = (x∗, y∗), and so p(1) = q(1) = 0.

Now, by classical arguments in convex analysis (see for instance [27, Theorem
23.4]) we get that ∂V (χ0, 0) ∕= ∅ if (χ0, 0) ∈ int (dom (V )). Since (x0, y0) %→
V (x0, y0) is a convex function and finite at (χ0, 0), it is enough to see that V
is uniformly bounded on a neighborhood of (χ0, 0).

Let Ψ(t) be the standard fundamental matrix for the non autonomous linear
system ẋ(t) = A(t)x(t). Recall that, for any u ∈ L∞([0, 1];Rm) and x0 ∈ Rn, the
unique solution to

ẋ(t) = A(t)x(t) +B(t)u(t) + ϕ(t) a.e. on [0, 1], x(0) = x0

is given by

x(t) = Ψ(t)x0 +Ψ(t)

% t

0

Ψ−1(s)[B(s)u(s) + ϕ(s)]ds, ∀t ∈ [0, 1].

Following ideas introduced in [15, Proposition 3.3], we claim that for any ε > 0
there exists a feasible process (xε, uε) such that BRn(xε(t), εr0) ⊆ Kt for each
t ∈ [0, 1],

ft(xε(t), uε(t)) ≤ εft(x̄(t), ū(t)) < 0, for a.e. t ∈ [0, 1],
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where (x̄, ū) and r0 > 0 are given by (H’), and

V (χ0, 0) + εκℓ (‖x̄− x∗‖∞ + ‖ū− u∗‖L∞) ≥
% 1

0

ℓt(xε(t), uε(t))dt.

To see this, define for α ∈]0, 1] the process

(xα, uα) = α(x̄, ū) + (1− α)(x∗, u∗).

Then by convexity and (H’), it is not difficult to see that

ẋα(t) = A(t)xα(t) +B(t)uα(t) + ϕ(t) a.e. on [0, 1],

ft(xα(t), uα(t)) ≤ αft(x̄(t), ū(t)) < 0 a.e. on [0, 1],

ζ(t) = D(t)uα(t) a.e. on [0, 1],

BRn(xα(t),αr0) ⊆ Kt on [0, 1],

uα(t) ∈ Ut a.e. on [0, 1].

Observe that xα(t)−x∗(t) = α(x̄(t)−x∗(t)) for any t ∈ [0, 1] and also that uα(t)−
u∗(t) = α(ū(t)− u∗(t)) for a.e. t ∈ [0, 1]. Thus,

% 1

0

ℓt(xα(t), uα(t))dt ≤ V (χ0, 0) + κℓ

% 1

0

(|xα(t)− x∗(t)|+ |uα(t)− u∗(t)|) dt

≤ V (χ0, 0) + ακℓ (‖x̄− x∗‖∞ + ‖ū− u∗‖L∞) .

Therefore, taking α = min{1, ε} we get what we have claimed above.
Now, take δ > 0 such that BRn(χ0; δ) ⊆ K0; recall from Remark 2.5 that χ0 ∈

int (K0). Let ε > 0, x0 ∈ BRn(χ0, δ) and x̄ε be the solution of the ODE

ẋ(t) = A(t)x(t) +B(t)uε(t) + ϕ(t) a.e. on [0, 1], x(0) = x0.

It is not difficult to see that

‖x̄ε − xε‖∞ ≤ ‖Ψ‖∞|x0 − xε(0)| ≤ e‖A‖∞(δ + ε|χ0 − x̄(0)|).

Therefore, since e‖A‖∞ |χ0 − x̄(0)| < r0, for δ, ε > 0 small enough we get that
‖x̄ε − xε‖∞ ≤ εr0, and so, x̄ε(t) ∈ Kt for each t ∈ [0, 1] and moreover, since f is
uniformly continuous on compacts set containing

{(t, x∗(t), u) : t ∈ [0, 1], u ∈ Ut such that |u| ≤ ψ(t, x∗(t))},

and |u∗(t)| ≤ ψ(t, x∗(t)) a.e. on [0, 1], we can also assume the following

ft(x̄ε(t), uε(t)) ≤
ε

2
ft(x̄(t), ū(t)), for a.e. t ∈ [0, 1].

Now, setting ȳε(t) = y0+
0 t

0
uε(s)ds and κ∗ = ‖x̄−x∗‖∞+ ‖ū−u∗‖L∞ we get that

V (x0, y0) ≤
% 1

0

ℓt(x̄ε(t), uε(t))dt+
1

2

% 1

0

|ȳε(t)− y∗(t)|2 dt

+
1

2
|x̄ε(1)− x∗(1)|2 + 1

2
|ȳε(1)− y∗(1)|2

≤
% 1

0

ℓt(xε(t), uε(t))dt+ κℓ‖x̄ε − xε‖∞

+ |x̄ε(1)− xε(1)|2 + |xε(1)− x∗(1)|2 + 2|y0|2 + 2‖u∗ − uε‖2L∞

≤ V (χ0, 0) + 2εκℓκ
∗ + ‖Ψ‖2∞(δ + ε)2 + 3ε2 + 2|y0|2.
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It follows then that V is uniformly bounded on a neighborhood of (χ0, 0), and so
the conclusion follows. □ □

5. Discussion of the Main Result and Example

Let us conclude this paper by doing a short discussion about the results we have
obtained.

5.1. Multiple mixed-constraints. Notice that Theorem 2.1 and Theorem 2.2
can also be stated for problems with multiple mixed-constraints, that is, the case
where there are k ∈ N continuous function f1, . . . fk : [0, 1]×Rn+m → R such that
each f i

t is a convex function for each t ∈ [0, 1] and i ∈ {1, . . . , k} fixed. In this case
the condition (H) is

(H̃) ri (Kt)× ri (Ut)
' k'

i=1

{(x, u) : f i
t (x, u) < 0} ∕= ∅, ∀t ∈ [0, 1].

From [27, Corollary 23.8.1], we also have that

N{f1
t ≤0,...,fk

t ≤0} (x, u) =

k1

i=1

N{fi
t≤0} (x, u) .

Moreover, since for each i = 1, . . . k we have

N{fi
t≤0} (x, u) =

.
(r, q) ∈ µ∂f i

t (x, u) : µ ≥ 0, µf i
t (x, u) = 0

/

it is not difficult to see that Theorem 2.1 turns into

Theorem 5.1. Suppose that (H̃) holds and (x, u) be an admissible process for
(Pχ0

) for which there exist an arc p ∈ BVn, some nonnegative measurable functions
µ1, . . . , µk : [0, 1] → [0,+∞[ and a measurable arc λ : [0, 1] → Rl satisfying the
following conditions:

(i) p(1) = 0;
(ii) µi(t)f

i(t, x(t), u(t)) = 0 for a.e. t ∈ [0, 1] for any i = 1, . . . , k;
(iii) for a.e. t ∈ [0, 1]

(
ṗ(t) +A∗

t p(t)− C∗
t λ(t)

B∗
t p(t)−D∗

t λ(t)

)
∈ ∂ℓt(x(t), u(t)) +

k1

i=1

µi(t)∂f
i
t (x(t), u(t)) +

(
NKt

(x(t))
NUt (u(t))

)
.

(iv) ξp(t) ∈ NX(t) (x(t)) dθ-a.e.

Then, (x, u) is a solution for (Pχ0).

In a similar way, if now the second condition in (H’) is replaced with

ess− sup
t∈[0,1]

max
i=1,...,k

f i
t (x̄(t), ū(t)) < 0

then the conditions in the preceding theorem are also necessary.
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5.2. Regularity of the costate. Let us now focus on the regularity of the costate
multiplier p. In particular, let us show that under the constraint qualification
version of the so called bounded slope condition (see [10] for example), the costate p
is an absolutely continuous function and not merely a function of bounded variation.

Theorem 5.2. Let y ∈ X(t). Then, for any v ∈ Rm such that (y, v) ∈ Ω(t) we
have

NX(t) (y) =
.
η ∈ Rn : (η, 0) ∈ NΩ(t) (y, v)

/
.(12)

In particular, if the the following bounded slope constraint qualification (BSCQ)
condition holds: there exists a constant M > 0 such that

(13) (y, v) ∈ Ω(t), (α,β) ∈ NΩ(t) (y, v) =⇒ |α| ≤ M |β|,

then the costate p given by Theorem 2.2 is absolutely continuous.

Proof. Let ρ1 : Rn+m → Rn be the projection onto Rn, i.e. ρ1(y, v) = y. As it was
noted before, ρ1(Ω(t)) = X(t). Clearly, the map ρ1 is strictly differentiable and
∇ρ1(y, v) is surjective at any (y, v); in fact, ∇ρ1(y, v) = ρ1. By [21, Theorem 1.57],
ρ1 is metrically regular at each (y, v), and hence, by [22, Theorem 4.2], whenever
Ω(t) ∕= ∅ and (y, v) ∈ Ω(t) we have the equality

NX(t) (y) = [ρ∗1(y)]
−1

*
NΩ(t) (y, v)

+

where ρ∗1 : Rn → Rn+m is the adjoint operator of ρ1. As one readily verifies,
ρ∗1(y) = (y, 0) for all y implying (12).

On the other hand, if (x∗, u∗) is as in Theorem 2.2, we can redefine u∗ in a set of
null measure in order to guarantee the inclusion (x∗(t), u∗(t)) ∈ Ω(t) for all t ∈ [0, 1]
and not just almost everywhere. Indeed, if t ∈ [0, 1] is such that (x∗(t), u∗(t)) /∈
Ω(t), we can take a sequence tk → t such that (x∗(tk), u

∗(tk)) ∈ Ω(tk) for all
k ∈ N and the sequence u∗(tk) is bounded. In this case, (tk, x

∗(tk), u
∗(tk)) is

bounded as well, so we can pass to a subsequence if necessary in order to guarantee
the convergence of (tk, x

∗(tk), u
∗(tk)) to (t, x∗(t), u), for some u ∈ Rm which, by

(A1),(A2) and (A3), satisfies (x∗(t), u) ∈ Ω(t). This u serves as our new value for
u∗(t). Therefore, if ξpdθ is any representation of the singular part of dp as before,
condition (iii) in Theorem 2.2 and (12) imply

(ξp(t), 0) ∈ NΩ(t) (x
∗(t), u∗(t)) ∀t ∈ [0, 1],

and consequently, by (13), ξp vanishes. □ □

5.3. Endpoint cost and constraints. Our main theorem on sufficient optimality
conditions has been written for problems with a free terminal point and no end-
point cost. This explains why the transversality condition (item (i) in Theorem
2.1) is p(1) = 0. However, it is possible to extend our result for problems with
general endpoint costs and constraints, as for instance the ones studied in [32].
Consider a function g : Rn × Rn → R ∪ {+∞}, which is convex, proper and lower
semicontinuous. This covers for instance the case in which

g(a, b) =

&
g0(a, b) if (a, b) ∈ S,

+∞ otherwise,
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where g0 is a continuous convex function and S is a closed, convex and nonempty
set. The problem to be studied now is

(P&)

!
""""""""""#

""""""""""$

Minimize

% 1

0

ℓ(t, x(t), u(t))dt+ g(x(0), x(1)),

over all (x, u) ∈ AC([0, 1];Rn)× L∞([0, 1];Rm),
such that ẋ(t) = A(t)x(t) +B(t)u(t) + ϕ(t) a.e. on [0, 1],

f(t, x(t), u(t)) ≤ 0 a.e. on [0, 1],
ζ(t) = C(t)x(t) +D(t)u(t) a.e. on [0, 1],
x(t) ∈ K(t) on [0, 1],
u(t) ∈ U(t) a.e. on [0, 1].

If we replace item (i) in Theorem 2.1 with the transversality condition

(p(0),−p(1)) ∈ ∂g(x(0), x(1))

then, Theorem 2.1 holds still for (P&). Indeed, just as in the proof of Theorem 2.1,
conditions (ii), (iii) and (iv) in Theorem 2.1 imply that the arc (x, y) is an extremal

with coextremal (p, q), where y(t) =
0 t

0
u(τ)dτ and q(t) = 0.

Therefore, since JL(x, y) is finite, (x, y) is optimal in the sense that

JL(x, y) = inf

,
JL(z, v) : (z, v) ∈ BVn ×BVm,

(z(0), v(0)) = (x(0), 0)
(z(1), v(1)) = (x(1), y(1))

-

and (x(0), y(0), x(1), y(1)) and (p(0), q(0), p(1), q(1)) are endpoints in duality:

JL(x, y) + JM (p, q) = 〈x(1), p(1)〉 − 〈x(0), p(0)〉.

On the other hand, if (z, v) is an admissible process for (P&), then setting w(t) =0 t

0
v(τ)dτ , we have by [29, Theorem 1] that

JL(z, w) + JM (p, q) ≥ 〈z(1), p(1)〉 − 〈z(0), p(0)〉.
By the transversality condition we get

g(z(0), z(1)) ≥ g(x(0), x(1)) + 〈x(1)− z(1), p(1)〉 − 〈x(0)− z(0), p(0)〉.
These two inequalities, with the fact that the endpoints are in duality, lead to

JL(z, w) + g(z(0), z(1)) ≥ −JM (p, q) + g(x(0), x(1)) + 〈x(1), p(1)〉 − 〈x(0), p(0)〉
= JL(x, y) + g(x(0), x(1))

From where we deduce the optimality of (x, u) for problem (P&).

5.4. Example. We end this paper with a simple example that illustrates how the
previous theorems can help us discern between solutions and non-solutions.

Example 5.1. Consider the following problem:
!
""""""""#

""""""""$

min J(x, u) =

% 1

0

x(t)dt,

s.t. (x, u) ∈ AC × L∞,
ẋ(t) = ln(2)[1 + u(t)] a.e.,
|x(t)|+ |u(t)| ≤ 1 a.e.,
u(t) ∈ [−1, 1] a.e,
x(0) = 0.

Clearly, assumptions (A1)-(A6) and (H) are satisfied, moreover, (H’) is also
satisfied with (x̄, ū) = (0, 0). Thus, the sufficient conditions in Theorem 2.1 and
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the necessary conditions in Theorem 2.2 are valid. Notice that in this example
X(t) = [−1, 1] for all t ∈ [0, 1].

First, we analyze the admissible process (y, v) defined by

y(t) = −2e− ln(2)t + 2, v(t) = 2e− ln(2)t − 1.

Note that the mixed constraint is always active, i.e. |y(t)| + |v(t)| = 1 for all t.
Inclusion (iii) in Theorem 2.1 becomes

(−ṗ(t), 0) ∈ (−1, ln(2)p(t))− (µ(t), µ(t)) + {0}× {0} a.e.

which, together with the complementary slackness, is equivalent to the pair of equa-
tions ṗ(t) = 1 + µ(t) a.e. and 0 ≤ µ(t) = ln(2)p(t) a.e.. On the other hand,
computing the normal cone in (iv) we obtain

NX(t) (y(t)) =

,
{0} if t ∈ [0, 1)
R+ if t = 1.

Since p is nonnegative, its absolutely continuous part is strictly increasing and its
singular part has only a nonnegative jump at t = 1, the transversality condition
p(1) = 0 is not to achieve. This analysis shows that the process (y, v) cannot be a
solution since the conditions are not satisfied. Indeed, it is not difficult to see that
the solution is the process (x, u) = (0,−1); we proceed to prove this with the help of
Theorem 2.1. For this process, condition (iii) is

(−ṗ(t), 0) ∈ (−1, ln(2)p(t)) + [−µ(t), µ(t)]× {1}+ {0}× R−

or, equivalently, −ṗ(t) + 1 ∈ [−µ(t), µ(t)] and − ln(2)p(t) − 1 ≤ 0. Both of these
equations are clearly satisfied by defining p(t) = 0 and µ(t) = 1, as well as the com-
plementary slackness condition in (i) and the inclusion in (iii). Since the conditions
in Theorem 2.1 are sufficient, (x, u) is indeed a solution.

Finally, notice p was taken absolutely continuous even though the mixed con-
straint does not satisfy the BSCQ due to the inclusion

R+ × {0} ⊂ NΩ(t) ((1, 0)) , ∀t ∈ [0, 1].

Remark 5.1. Notice that in Example 5.1 we have f(t, x, u) ∈ [0, 2 ln(2)] for any
u ∈ U(t) and the underlying state constraint is the set [−1, 1]. In particular, in
this example the IPC is not satisfied, however, as pointed out above, the interior
feasibility condition (H’) holds, demonstrating that this condition is less restrictive
than the IPC as claimed in Remark 2.6.

6. Conclusion

It is well-known that when no state constraints or mixed constraints are present,
any feasible process that satisfies the Maximum Principle in a problem with a linear-
convex structure is actually a (global) minimizer. This is also true for problem with
(pure) state constraints; see for instance [14, Section 8] or [11], and the reference
therein. In this paper we have shown that this fact is also true for problems with
mixed constraints; as a matter of fact, for problems that have mixed and pure state
constraints combined. It is important to highlight that this has been accomplished
without the need of imposing smoothness assumptions on the data of the problem
or further structural conditions on the costate multiplier as for instance done in
[19].

Furthermore, we have also shown that the optimality conditions we have obtained
are in fact necessary under a suitable Slater type qualification condition. This
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condition is of different nature than the usual regularity conditions imposed in the
literature (the Mangasarian-Fromovitz’s one or the bounded slope condition), and
in some sense, it is weaker than usual regularity conditions, because it does not
force the costate multiplier to be an absolutely continuous arc, it can rather be an
arc of bounded variation.
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