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Abstract

In the context of constrained control-systems, the Set of Sustainable Thresholds
plays in a sense the role of a dual object to the so-called Viability Kernel, because
it describes all the thresholds that must be satisfied by the state of the system
along a time interval, for a prescribed initial condition. This work aims at ana-
lyzing the sensitivity of the Set of Sustainable Thresholds, when it is seen as a
set-valued map that depends on the initial position. In this regard, we investigate
semicontinuity and Lipschitz continuity properties of this mapping, and we also
study several contexts when the Set of Sustainable Thresholds is convex-valued.

Keywords: Set-valued maps, Set of Sustainable Thresholds, Discrete-time systems,
Semicontinuity, Lipschitz continuity, Convexity
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1 Introduction

This paper aims at contributing in the understanding of the so called Set of Sustainable
Thresholds, which roughly speaking corresponds to the set of all possible parameters
c ∈ Rm, called the thresholds, for which the evolution of a dynamical system remains
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viable for a prescribed set of constraints, which in our setting will take the form

g(k, x, u) ≤ c, ∀k ∈ [[0 : T ]] := {0, . . . , T},

for a given mapping g : [[0 : T ]]× Rd ×U −→ Rm and a given nonempty set U. Here
and in the sequel, the inequalities are understood in a component-wise sense.

The Set of Sustainable Thresholds plays in a sense the role of a dual object to the
so-called Viability Kernel. To be more precise, in Viability Theory (see, e.g. [1]) one is
concerned with the question of finding all the possible initial positions for which the
constraints are satisfied for at least one control; in that setting the thresholds are fixed.
The Set of Sustainable Thresholds is an object that focuses on a converse question:
assume the initial position is known, find all the possible thresholds for which the
system is viable for at least one control. In some contexts, such as in natural resources
management, the sustainability question is more appropriate than the viability one,
because usually one has an estimate of how many resources are in an ecosystem, so
the initial position is already prescribed and cannot be modified at will. However, in
the same setting, decision-makers can fix different values for payoffs, scores or quality
indicators, and put them in the form of the set of constraints described above. In this
case, the decision-makers have more freedom for choosing these parameters, i.e. the
thresholds.

The Set of Sustainable Thresholds has been studied in the literature from several
points of view. For example, in [2], motivated by an epidemiology model, a method for
computing this set for controlled cooperative models was investigated; see also [3–6].
In [7], a detailed study of the Set of Sustainable Thresholds was reported concerning
the problem of characterizing their Pareto boundaries, and so forth, the set itself. This
study was done considering the initial position as given; see also [8] for an extension to
dynamics with uncertainty. We also mention [6] where another approach to compute
the Pareto boundaries of the Set of Sustainable Thresholds was presented.

Our task in this paper is to study how the Set of Sustainable Thresholds changes
with respect to the initial position. In mathematical terms this means studying the
continuity properties of the set-valued map associated with the Set of Sustainable
Thresholds. We focus on lower semicontinuity and Lipschitz continuity, and we prove
that under mild condition both features can be ensured. Being able to ensure these
properties is relevant from a theoretical as well as from a practical point of view. On the
one hand, it allows us to infer that sustainable thresholds do not vary abruptly when
the initial position changes; in the Lipschitz case we can actually quantify the variation.
Moreover, and as it can be observed in the proof of Theorem 5 and Theorem 6,
it allows us to establish a rule useful for decision-makers: a given control produces
similar sustainable thresholds for similar initial conditions. This, in a manner, allows
to handle measurement error on the initial position. On the other hand, it opens to
path for studying the stability of numerical schemes to compute the Set of Sustainable
Thresholds, such as the one reported in [7], and also to provide error estimates.

In this paper we also discuss cases when the Set of Sustainable Thresholds is
convex-valued. It is well-known that the viability kernel has convex images in the
linear-convex setting. Analogously, we prove that it is also the case for the Set of
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Sustainable Thresholds. Furthermore, we prove that that fact also holds if some gen-
eralized notions of convexity and monotonicity are considered. The fact that the Set
of Sustainable Thresholds is convex-valued could potentially be an important tool for
developing new numerical schemes for computing its Pareto fronts. Notice that the
results reported in [7] are rather general and do not take advantage of convexity.

This paper is organized as follows: In section 2, we describe the dynamical sys-
tems studied in this paper, and present basic properties of the images of the Set of
Sustainable Thresholds (closedness and convexity). In section 3, we focus on the sen-
sitivity analysis, and study the continuity properties mentioned above. In section 4
we introduce a new object, called the Set of Sustainable and Attainable Thresholds,
which can be thought as the core of the Set of Sustainable Thresholds and we study
its regularity properties. Finally, in Section 5 we provide some numerical experiments
to complement the theoretical analysis and in Section 6 we make a short discussion
on possible extensions to continuous-time dynamical systems.

2 Mathematical background and basic properties

The focus of this paper will be on discrete-time dynamical systems. Feasible controls
in our setting are all the functions u = [[0 : T ]] −→ U, which can be seen as sequences
of inputs u(0), . . . ,u(T ) ∈ U. Here and in what follows, the time horizon T > 0 is a
given nonnegative fixed integer, U is a given nonempty set, [[p : q]] := {p, p+1, . . . , q},
stands for the collection of all integers between p and q (inclusive), assuming always
that p < q. The collection of all feasible controls will be denoted by U .

For a given dynamics F : [[0 : T ]]×Rd×U −→ Rd, a given initial condition ξ ∈ Rd

and a given control u ∈ U , we are concerned with functions x : [[0 : T + 1]] −→ Rd

solution of the dynamical system

x(k + 1) = F (k, x(k),u(k)), ∀k ∈ [[0 : T ]], x(0) = ξ. (Du
ξ )

A solution of this system is uniquely determined by the initial position and the control,
and therefore it is denoted by xu

ξ .
Mathematically speaking, the Set of Sustainable Thresholds (SST for short),

denoted by S(ξ) in the sequel, is defined in the following way:

S(ξ) :=
{
c ∈ Rm | ∃u ∈ U such that g

(
k,xu

ξ (k),u(k)
)
≤ c, ∀k ∈ [[0 : T ]]

}
where, as pointed out in the introduction, g : [[0 : T ]]× Rd ×U −→ Rm is given.

Our task in this paper is to provide a sensitivity analysis for the SST. In other
words, we aim at understanding how the set S(ξ) changes with respect to the variable ξ.
Therefore, the SST will be deemed as a set-valued map S : Rd ⇒ Rm and we will
study continuity and regularity properties of this set-valued map. Properties such as
convexity, closedness, semi-continuity and Lipschitz continuity will be investigated.

In this work, and in compliance with [7], we assume that the data of the dynamical
system with mixed constraints satisfy the following basic conditions, which we term
standing assumptions:

(H1) U is a nonempty compact metric space;
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(H2) F (k, ·, ·) is continuous on Rd ×U for any k ∈ [[0 : T ]];
(H3) g(k, ·, ·) is lower semicontinuous on Rd ×U for any k ∈ [[0 : T ]].

In the next section, these assumptions may be accordingly strengthened to get
stronger regularity conditions.

2.1 Basic properties

In this part we present some basic regularity properties that are satisfied by the graph
and the images of the set-valued map S : Rd ⇒ Rm. We also show that, under suitable
additional assumptions, this set-valued map also satisfies a monotonicity property.

2.1.1 Closedness

The first property we study is closedness.
Proposition 1. Assume that the standing assumptions are satisfied. Then, the set-
valued map S : Rd ⇒ Rm has closed graph with closed and nonempty images.

Proof. Consider two sequences, {ξn}n ⊂ Rd and {cn}n ⊂ Rm, so that cn ∈ S(ξn) for
any n ∈ N, with ξn → ξ and cn → c.

By definition, there is a sequence {un}n ⊂ U such that

g
(
k,xun

ξn
(k),un(k)

)
≤ cn, ∀k ∈ [[0 : T ]], ∀n ∈ N.

Since U ∼= UT+1, by (H1) and Tychonoff’s theorem we have that U is compact, and
so, passing into a subsequence (which we do not relabel), we can assume that there is
u ∈ U such that un → u; that is un(k) → u(k) for any k ∈ [[0 : T ]]. Since we also have
that xun

ξn
(0) = ξn, it follows that xun

ξn
(0) → ξ. Thus, by induction on k and by (H2)

(the continuity of the dynamics), it is not difficult to see that for any k ∈ [[0 : T ]] fixed
we have

xun

ξn
(k + 1) = F

(
k,xun

ξn
(k),un(k)

)
→ F

(
k,xu

ξ (k),u(k)
)
= xu

ξ (k + 1).

Consequently, in the light of (H3) and the fact that cn → c, we get

g
(
k,xu

ξ (k),u(k)
)
≤ c, ∀k ∈ [[0 : T ]],

or in other words, c ∈ S(ξ), and so the graph of S is closed. It is then a straightforward
matter to check that S(ξ) is closed for each ξ ∈ Rd fixed.

Finally, notice that for any ξ ∈ Rd and any u ∈ U , the threshold c = (c1 . . . , cm)
given by

ci = max
k∈[[0:T ]]

(
gi
(
k,xu

ξ (k),u(k)
))

,

belongs to S(ξ). This means that for any ξ ∈ Rd, we have that S(ξ) ̸= ∅.
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2.1.2 Convexity

Similarly as for the viability kernel, when the system is linear-convex, it can be proven
that the set-valued mapping S verifies some convexity properties, as described below.
Proposition 2. Assume that the standing assumptions are strengthened as follows:

(H̃1) U ⊂ Rn is a nonempty convex subset;
(H̃2) for any k ∈ [[0 : T ]] fixed, F (k, x, u) = A(k)x+ B(k)u, where A(k) and B(k) are

matrices of dimension d× d and d× n, respectively;
(H̃3) for any k ∈ [[0 : T ]] and i ∈ [[1 : m]] fixed, gi(k, ·) is convex on Rd ×U .
Then, the set-valued map S : Rd ⇒ Rm has convex graph with convex images.

Proof. Let ξ1, ξ2 ∈ Rd, and c1, c2 ∈ Rm, such that c1 ∈ S(ξ1) and c2 ∈ S(ξ2). Let
λ ∈ [0, 1]. Let u1,u2 ∈ U , be such that

g
(
k,xui

ξi
(k),ui(k)

)
≤ ci, ∀k ∈ [[0 : T ]], ∀i = 1, 2.

By convexity of the constraints mapping we have

g
(
k, λxu1

ξ1
(k) + (1− λ)xu2

ξ2
(k), λu1(k) + (1− λ)u2(k)

)
≤ λc1+(1−λ)c2, ∀k ∈ [[0 : T ]].

By convexity of U, we have that λu1(k) + (1− λ)u2(k) ∈ U for any k ∈ [[0 : T ]], and
since the dynamics is linear, we also have that

x
λu1+(1−λ)u2

λξ1+(1−λ)ξ2
(k) = λxu1

ξ1
(k) + (1− λ)xu2

ξ2
(k), ∀k ∈ [[0 : T + 1]].

From here we conclude that

λc1 + (1− λ)c2 ∈ S (λξ1 + (1− λ)ξ2) .

Therefore, the graph of S is convex. In particular, this implies that the images of S
are convex as well.

In Proposition 2 it is fundamental that the control space U is convex as the
following example demonstrates.
Example 1. Take F (k, x, u) = u, g1(k, x, u) = −u and g2(k, x, u) = x. Notice
that (H̃2) and (H̃3) hold. Take U = {−1, 1}, which is not convex, the final horizon
T > 2 and the initial position ξ > −1. There are three types of admissible controls
that we need to analyze:

• u(k) = −1 for any k ∈ [[0 : T ]]: Here we have that the minimal value that c1 can
take is c∗1 = 1, and since xu

ξ (k + 1) = −1 for any k ∈ [[0 : T ]] the minimal value
that c2 can take is c∗2 = ξ, because xu

ξ (0) = ξ > −1. Therefore, (1, ξ) ∈ S(ξ).
• u(k) = 1 for any k ∈ [[0 : T ]]: Here we have that the minimal value that c1 can

take is c∗1 = −1, and since xu
ξ (k + 1) = 1 for any k ∈ [[0 : T ]] the minimal value

that c2 can take is c∗2 = 1. Thus, (−1, 1) ∈ S(ξ).
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• u is not constant: : Here we have that the minimal value that c1 can take is
c∗1 = 1, because u(k) = −1 for some k ∈ [[0 : T ]]. Notice that if u(j) = 1 for some
j ∈ [[0 : T−1]], the minimal value that c2 can take is c∗2 = 1, otherwise it is c∗2 = ξ.

Notice that (−1, 1), (1, 0) ∈ S(0), but (0, 1
2 ) /∈ S(0). If it was the case, then the asso-

ciated control must satisfy u(k) ≥ 0 for any k ∈ [[0 : T ]], and so u will be the control
constantly equal to 1. But, we have seen that in this case the minimal value that c2
can take is c∗2 = 1. It follows then that S(0) is not a convex set.

As a matter of fact, one can check that for ξ > −1 we have

S(ξ) =
{
(c1, c2) ∈ R2 | c1 ≥ −1, c2 ≥ 1

}⋃{
(c1, c2) ∈ R2 | c1 ≥ 1, c2 ≥ ξ

}
.

Therefore, S(ξ) is not a convex set for any ξ > −1.

Fig. 1: Sketch of the SST of Example 1.

Example 2. The assumption on convexity over the constraints mapping (H̃3) may
seem rather strong at first sight. However, it appears somewhat naturally in renew-
able resource management models. Consider for instance a discrete-time version of an
example taken from [9], where each xk represents the stock of a renewable resource at
a time period k and the control u(k) is the catch. In this model a regulatory agency has
the social objective of ensuring a minimal stock and a minimal catch. In mathematical
terms this means that for some thresholds xlim and hlim we must have:

−xk ≤ −xlim and − u(k) ≤ −hlim, ∀k ∈ [[0 : T ]].
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Notice that this example lies within the setting of (H̃3).
On the other hand, the assumption over the dynamics (H̃2) may indeed rule out

several interesting cases of study; it is not very often that dynamics in natural resource
management are linear. Fortunately, the convexity of the STT can still be preserved
if linearity is replaced with some notions of generalized convexity and monotonicity
for vector fields.

We now present a criterion, which covers several cases of interest, that allows to
ensure that the set-valued map S : Rd ⇒ Rm has convex graph and images. The
underlying idea is the following. From [7], we have that S(ξ) = {c ∈ Rm | ωξ(c) ≤ 0},
where

ωξ(c) = min
u∈U

max
k∈[[0:T ]]

max
i∈[[1:m]]

(
gi
(
k,xu

ξ (k),u(k)
)
− ci

)
, ∀c ∈ Rm.

Notice that we also have

gr (S) =
{
(ξ, c) ∈ Rd × Rm | c ∈ S(ξ)

}
=
{
(ξ, c) ∈ Rd × Rm | ωξ(c) ≤ 0

}
(1)

Therefore, the convexity of the SST can be obtained from studying the convexity of
the function (ξ, c) 7→ ωξ(c). To do so in a nonlinear dynamics framework, we need to
introduce some definitions.
Definition 1. For a nonempty set K ⊂ Rd, let us consider the relation ⪯K on Rd

defined as follows
x ⪯K y ⇐⇒ y − x ∈ K.

• Given a nonempty convex set S ⊂ Rp, we say that a vector field Ψ : S → Rd is
K-convex if

Ψ(λx+ (1− λ)y) ⪯K λΨ(x) + (1− λ)Ψ(y), ∀x, y ∈ S, λ ∈ [0, 1].

Similarly, we say that it is K-concave if

λΨ(x) + (1− λ)Ψ(y) ⪯K Ψ(λx+ (1− λ)y), ∀x, y ∈ S, λ ∈ [0, 1].

• A mapping Φ : Rd → Rd is said to be a K-monotone vector field if

Φ(x) ⪯K Φ(y), ∀x, y ∈ Rd, such that x ⪯K y.

• A function φ : Rd → R is said to be a K-monotone function if

φ(x) ≤ φ(y), ∀x, y ∈ Rd, such that x ⪯K y.

Remark 1. K-monotonicity of functions is preserved under inf and sup operations.
Indeed, let {φα}α∈Λ be a family of K-monotone functions, and define

φ−(x) := inf
α∈Λ

φα(x) and φ+(x) := sup
α∈Λ

φα(x), ∀x ∈ Rd.
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For any x, y ∈ Rd such that x ⪯K y, it follows that

φ−(x) ≤ φα(x) ≤ φα(y) ≤ φ+(y), ∀α ∈ Λ.

In particular,

φ−(x) ≤ φα(y) and φα̃(x) ≤ φ+(y), ∀α, α̃ ∈ Λ. (2)

Therefore, taking infimum over α ∈ Λ and supremum over α̃ ∈ Λ in (2), we obtain
φ−(x) ≤ φ−(y) and φ+(x) ≤ φ+(y), and so φ− and φ+ are K-monotone functions.

The monotonicity character of the dynamics is a rather common property
encountered in applications as the following examples demonstrate.
Example 3. Consider first a particular case of the renewable resource management
model mentioned in Example 2, where the dynamical system is then given by

x(k + 1) = fBH(x(k))− u(k), ∀k ∈ [[0 : T ]],

where f is the so-called Beverton-Holt population dynamics, which is given by

fBH(x) = (1 + r)x
(
1 +

r

κ
x
)−1

, ∀x ∈ R \
{
−κ

r

}
. (3)

The parameters r and κ are both positive, the first one being the intrinsic growth
and the second one the carrying capacity κ. It is not difficult to see that fBH is
strictly increasing and concave on (−κ

r ,+∞). In particular, since f ′
BH(0) = 1+ r, the

Beverton-Holt population dynamics can be re-defined on (−∞, 0) in the way described
below, so that it is strictly increasing and concave on R:

f̃BH(x) =

{
fBH(x) if x ≥ 0

(1 + r)x if x < 0.
(4)

Consequently, the dynamics

F (k, x, u) = f̃BH(x)− u, ∀x, u ∈ R,

satisfies the conditions of Theorem 4 stated below for K = R+.
Remark 2. Note that the modification of the Beverton-Holt population dynamics done
in Example 3 does not have a true impact on renewable resource management models,
because in general one is concerned with the case where the state satisfies x ≥ 0.
Example 4. Let us consider now a single species age-classified model of fishing (see
e.g. [10, §2.6]), where the state variable x = (x1, . . . , xd) corresponds to the abundance
population, that is, each xj represents the number of individuals of age between j − 1
and j. The evolution of the abundance of the age structured model presented in [10,
§2.6] can be written as follows:

x(k + 1) = F (x(k),u(k)), ∀k ∈ [[0 : T ]],
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where

F1(x, u) = f̃BH

(
d∑

j=1

γjvjxj

)
and Fj+1(x, u) = xje

−(Mj+uFj), ∀x ∈ Rd, u ∈ R.

Here for a given age j, γj ≥ 0 is the proportion of mature individuals, vj > is the
weight at age j, Mj ≥ 0 is the mortality rate of individuals of age j and Fj ≥ 0
is the exploitation pattern at age j. The control u represents the fishing effort. It
can be readily checked that the dynamics associated with this model complies with the
conditions of Theorem 4 stated below for K = Rd

+.
Remark 3. If K = Rd

+, then K-convexity, K-concavity and K-monotonicity mean
component-wise convexity, concavity and monotonicity in the usual sense on R,
respectively. Note as well that in the case K = {0}, the K-monotonicity is trivial.

It is well-known that if K is a closed convex cone, ⪯K is a reflexive and transitive
relation, which is also antisymmetric if for instance K is pointed (K contains no
lines). However, for our purposes, none of these features are required.

Let us now present the main results of this section.
Theorem 3. Assume that the standing assumptions are satisfied. Let K ⊂ Rd be a
given nonempty set and assume in addition that

(A1) U ⊂ Rn is a convex subset;
(A2) for any k ∈ [[0 : T ]] fixed, F (k, ·) is K-convex and F (k, ·, u) is a K-monotone

vector field for any u ∈ U fixed;
(A3) for any k ∈ [[0 : T ]] and i ∈ [[1 : m]] fixed, gi(k, ·) is convex on Rd × U and

gi(k, ·, u) is a K-monotone function for any u ∈ U fixed.
Then, gr (S) is a convex subset of Rd ×Rm, for each ξ ∈ Rd the set S(ξ) is convex

and S(ξ) ⊂ S(ξ′) whenever ξ′ ⪯K ξ.

Proof. The conclusion follows from proving, thanks to (1), that (ξ, c) 7→ ωξ(c) is convex
and that ωξ′(c) ≤ ωξ(c) for any c ∈ Rm fixed and ξ′, ξ ∈ Rd such that ξ′ ⪯K ξ.

Let us begin by recalling that the value function ωξ can be computed by means of
the Dynamic Programming Principle (see, e.g., [7, Proposition 3]). Indeed, define for
any n ∈ [[0 : T ]]

V c
n (ξ) = min

u∈U

{
max

k=n,...,T
Φc(k, xk,u(k)) | xk+1 = F (k, xk,u(k)), k ∈ [[n : T ]], xn = ξ

}
,

where
Φc(k, x, u) = max

i∈[[1:m]]
gi(k, x, u)− ci.

Notice that V c
0 (ξ) = ωξ(c) and V c

T (ξ) = min
u∈U

Φc(T, ξ, u). From [7, Proposition 3] we

have

V c
n (ξ) = min

u∈U
max

{
V c
n+1 (F (n, ξ, u)) ,Φc(n, ξ, u)

}
. (5)
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Therefore, to get the conclusion, we use the Principle of Mathematical Induction
backward on the time variable n to prove the following claim: given n ∈ [[0 : T ]]

(c, ξ) 7→ V c
n (ξ) is convex and ξ 7→ V c

n (ξ) is a K-monotone function. (6)

Before going further, let us state two affirmations that will be helpful in the sequel:
(Af1) for any k ∈ [[0 : T ]] fixed, the mapping (c, x, u) 7→ Φc(k, x, u) is convex;
(Af2) for any k ∈ [[0 : T ]], c ∈ Rm and u ∈ U fixed, x 7→ Φc(k, x, u) is K-monotone.

Notice that (Af1) is a consequence of (A3), because we have that the mapping
(c, x, u) 7→ Φc(k, x, u) is the maximum of a family of the convex functions. More-
over, (Af2) is a consequence of Remark 1. Indeed, in this case we need to observe
that x 7→ Φc(k, x, u) is the maximum of a family of K-monotone functions.

Base case: the fact that for n = T the claim (6) holds true is a rather direct
consequence of (Af1) and (Af2). Indeed, we can deduce first that (c, ξ) 7→ V c

T (ξ)
is convex, since it is the marginal function of a convex function, and second that
ξ 7→ V c

T (ξ) is K-monotone, because it is the infimum of a family of K-monotone
functions; see Remark 1.

Induction step: given n ∈ [[0 : T − 1]], assume that the mapping (c, ξ) 7→ V c
n+1(ξ)

is convex and ξ 7→ V c
n+1(ξ) is a K-monotone function. We divide this part of the proof

into two steps.
1. We first prove that (c, ξ) 7→ V c

n (ξ) is convex. Notice that, thanks to (5) and (Af1),
we just need to prove

(c, ξ, u) 7→ V c
n+1 (F (n, ξ, u)) is convex. (7)

Indeed, this will imply that (c, ξ, u) 7→
{
V c
n+1 (F (n, ξ, u)) ,Φc(n, ξ, u)

}
is convex,

and so is (c, ξ) 7→ V c
n (ξ) since it is the marginal of a convex function. The fact

that (7) holds true follows from the fact that (ξ, u) 7→ F (n, ξ, u) is K-convex and
from the induction hypothesis: Observe that for any c ∈ Rm, x, y ∈ Rd, u, v ∈ U
and λ ∈ [0, 1] we have that

V c
n+1 (F (n, λx+ (1− λ)y, λu+ (1− λ)v)) ≤ V c

n+1 (λF (n, x, u) + (1− λ)F (n, y, v)) .

Evaluating at c = λa + (1 − λ)b for a, b ∈ Rm and using the convexity of the
mapping (c, ξ) 7→ V c

n+1(ξ), we get (7).
2. Let us prove now that ξ 7→ V c

n (ξ) is a K-monotone function. Notice first that
ξ 7→ V c

n+1 (F (n, ξ, u)) is a K-monotone function. Indeed, since ξ 7→ F (n, ξ, u) is
a K-monotone vector field, by the induction hypothesis we get:

ξ′ ⪯K ξ =⇒ F (n, ξ′, u) ⪯K F (n, ξ, u) =⇒ V c
n+1 (F (n, ξ′, u)) ≤ V c

n+1 (F (n, ξ, u)) .

From Remark 1 and (Af2) we get that ξ 7→
{
V c
n+1 (F (n, ξ, u)) ,Φc(n, ξ, u)

}
is a

K-monotone function. Thus, by (5) and again Remark 1, the latter implies that
ξ 7→ V c

n (ξ) is a K-monotone function.
Therefore, the conclusion follows from the Induction Principle.
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Remark 4. Notice that the data in Example 1 satisfy the assumptions (A2) and (A3)
with K = {0}. Thus the convexity assumption (A1) is also essential for the validity
of Theorem 3.

Similar arguments as the ones presented above can be used to prove the following
result. Notice that in this theorem, the monotonicity behavior of the mapping ξ 7→ S(ξ)
changes with respect to Theorem 3.
Theorem 4. Assume that the standing assumptions are satisfied. Let K ⊂ Rd be a
given nonempty set and assume that

(A1) U ⊂ Rn is a convex subset;
(A2) for any k ∈ [[0 : T ]] fixed, F (k, ·) is K-concave and F (k, ·, u) is a K-monotone

vector field for any u ∈ U fixed;
(A3) for any k ∈ [[0 : T ]] and i ∈ [[1 : m]] fixed, gi(k, ·) is convex on Rd × U and

−gi(k, ·, u) is a K-monotone function for any u ∈ U fixed.
Then, gr (S) is a convex subset of Rd ×Rm, for each ξ ∈ Rd the set S(ξ) is convex

and S(ξ′) ⊂ S(ξ) whenever ξ′ ⪯K ξ.

Proof. The idea in this case is to prove as well that c 7→ ωξ(c) is convex, but now that
ωξ(c) ≤ ωξ′(c) for any c ∈ Rm fixed and ξ′, ξ ∈ Rd such that ξ′ ⪯K ξ.

The proof is essentially the same as for Theorem 3, however noticing that in this
case for any given u ∈ U and c ∈ Rm, the function ξ 7→ −Φc(k, ξ, u) is K-monotone,
which implies that the function ξ 7→ −V c

T (ξ) is K-monotone for any given c ∈ Rm.
Therefore, the Induction Hypothesis in this case says that for n ∈ [[0 : T − 1]] the

mapping (c, ξ) 7→ V c
n+1(ξ) is convex and ξ 7→ −V c

n+1(ξ) is a K-monotone function.
The conclusion then is obtained arguing as in the proof of Theorem 3.

3 Sensitivity analysis of the SST

In this part we focus on the sensitivity analysis of the SST, by studying several notions
of continuity for the set-valued map S : Rd ⇒ Rm.

3.1 Lower semicontinuity

Recall that a set-valued map Ψ : Rd ⇒ Rm is said to be lower semicontinuous at
x ∈ Rd if and only if for every y ∈ F (x) and for every sequence {xn}n converging to x,
there exists a sequence {yn}n converging to y such that yn ∈ F (xn), for any n ∈ N.
Theorem 5. Assume that (H2) holds and suppose that g(k, ·, u) is continuous on Rd

for any u ∈ U and k ∈ [[0 : T ]] fixed. Then, S : Rd ⇒ Rm is lower semicontinuous.

Proof. Let c ∈ S(ξ) and u ∈ U the corresponding control given by the definition of the
SST. Take a sequence {ξn}n such that ξn −→ ξ. Notice first that for every k ∈ [[0 : T ]]
fixed, we have xu

ξn
(k) −→ xu

ξ (k); this is a straightforward consequence of (H2). Also,
by assumption, since each mapping g(k, ·,u(k)) is continuous at x = xu

ξ (k), we have
that

max
k∈[[0:T ]]

gi
(
k,xu

ξn(k),u(k)
)
−→ max

k∈[[0:T ]]
gi
(
k,xu

ξ (k),u(k)
)
, ∀i ∈ [[1 : m]].

11



Define now

cn,i = ci − max
k∈[[0:T ]]

gi
(
k,xu

ξ (k),u(k)
)
+ max

k∈[[0:T ]]
gi
(
k,xu

ξn(k),u(k)
)

Clearly, cn,i −→ ci for any i ∈ [[1 : m]] and also since ci ≥ max
k∈[[0:T ]]

gi(k,x
u
ξ (k),u(k)), we

have that (cn,1, . . . , cn,m) ∈ S(ξn), which completes the proof.

Another concept that may be worth studying is the continuity of the mapping
ξ 7→ S(ξ). Recall that a set valued-map Ψ : Rd ⇒ Rm is said to be continuous at x if
it is lower semicontinuous at x and upper semicontinuous at x in the sense that for
every neighborhood V of Ψ(x), there exists η > 0 such that:

Ψ(x′) ⊂ V, ∀x′ ∈ Rd such that ∥x− x′∥ < η.

Upper semicontinuity for set-valued maps is a notion that does not fit well with
non-compact valued maps, as can be inferred from [11, Theorem 1.1.2]. Notice that
the SST is by definition unbounded because

S(ξ) + Rm
+ ⊂ S(ξ), ∀ξ ∈ Rd.

This suggests that upper semicontinuity is not a property commonly satisfied by the
SST, even for very simple cases. Indeed, it is not difficult to see that in Example 1,
the mapping ξ 7→ S(ξ) is not upper semicontinuous at ξ = 0.

Therefore, in general the mapping ξ 7→ S(ξ) will not be continuous. However,
contrarily to the single-valued case, continuity of a set-valued map is not mandatory for
that mapping to be Lipschitz continuous. Recall that a set valued-map Ψ : Rd ⇒ Rm

is said to be Lipschitz continuous if there is a constant κΨ ≥ 0 such that

sup
y∈Ψ(x)

dist(y,Ψ(x̄)) ≤ κΨ∥x− x̄∥, ∀x, x̄ ∈ Rd,

where dist(z, S) := inf
s∈S

∥s− z∥ is the so-called distance function to a set S.

Remark 5. A set-valued map can be Lipschitz continuous without being upper semi-
continuous. For example, one might consider the set-valued map Ψ : Rd ⇒ Rd, such
that Ψ(x) = {y ∈ Rd | y = f(x) + v, v ∈ Rd

+}, where the mapping f : Rd → Rd is
Lipschitz continuous on Rd.

3.2 Lipschitz continuity

As can be inferred from the discussion above, Lipschitz continuity of the mapping
ξ 7→ S(ξ) can be examined despite the fact that this mapping is not continuous in
general. Indeed, it is possible to demonstrate that the SST depends in a Lipschitz way
on the initial position variable, provided the data of the problem is regular enough.
Theorem 6. Suppose that there exist κF , κg ≥ 0 such that F (k, ·, u) and g(k, ·, u)
are Lipschitz continuous on Rd of modulus κF and κg, respectively, for any u ∈ U
and k ∈ [[0 : T ]] fixed. Then, ξ 7→ S(ξ) is Lipschitz continuous on Rd.

12



Proof. Let κS :=
√
m κg max

{
1, κT

F

}
. We are going to prove that

sup
ĉ∈S(ξ)

dist
(
ĉ,S

(
ξ̄
))

≤ κS∥ξ − ξ̄∥, ∀ξ̄, ξ ∈ Rd.

Let ξ̄, ξ ∈ Rd be given and take any c ∈ S(ξ) (fixed but arbitrary). Let u ∈ U be a
control such that

g
(
k,xu

ξ (k),u(k)
)
≤ c, ∀k ∈ [[0 : T ]].

Let c̄ ∈ Rm be given by

c̄i = ci + max
k∈[[0:T ]]

(
gi

(
k,xu

ξ̄ (k),u(k)
)
− gi

(
k,xu

ξ (k),u(k)
))+

, ∀i ∈ [[1 : m]]

where a+ stands for the positive part of a ∈ R.
It follows by construction that c̄ ∈ S

(
ξ̄
)
and in particular

dist
(
c,S

(
ξ̄
))

= inf
{
∥c− ĉ∥ | ĉ ∈ S

(
ξ̄
)}

≤ ∥c− c̄∥.

Let us prove first that
∥c− c̄∥ ≤ κS∥ξ − ξ̄∥. (8)

Notice that if

gi

(
k,xu

ξ̄ (k),u(k)
)
≤ gi

(
k,xu

ξ (k),u(k)
)
, ∀k ∈ [[0 : T ]], i ∈ [[1 : m]],

then c = c̄ and therefore (8) holds. So, let us assume that there is k̂ ∈ [[0 : T ]] and
i ∈ [[1 : m]] such that

gi

(
k̂,xu

ξ̄ (k̂),u(k̂)
)
> gi

(
k̂,xu

ξ (k̂),u(k̂)
)
.

In particular, for some k ∈ [[0 : T ]]

|c̄i − ci| = c̄i − ci = gi

(
k,xu

ξ̄ (k),u(k)
)
− gi

(
k,xu

ξ (k),u(k)
)
.

Notice that
∥g(0, ξ,u(0))− g(0, ξ̄,u(0))∥ ≤ κg∥ξ − ξ̄∥.

Fix now j ∈ [[0 : T − 1]]. Then, we have that

∥g(j + 1,xu
ξ (j + 1),u(j + 1))− g(j + 1,xu

ξ̄ (j + 1),u(j + 1))∥

≤ κg∥xu
ξ (j + 1)− xu

ξ̄ (j + 1)∥

≤ κg∥F (j,xu
ξ (j),u(j))− F (j,xu

ξ̄ (j),u(j))∥

≤ κgκF ∥xu
ξ (j)− xu

ξ̄ (j)∥.

13



It is not difficult then to get by the Induction Principle that for any j ∈ [[0 : T ]]

∥g(j,xu
ξ (j),u(j))− g(j,xu

ξ̄ (j),u(j))∥ ≤ κgκ
j
F ∥ξ − ξ̄∥.

Consequently,
|c̄i − ci| ≤ κgκ

k
F ∥ξ − ξ̄∥.

Therefore,
∥c− c̄∥ ≤

√
m κgκ

k
F ∥ξ − ξ̄∥.

Thus, since κk
F ≤ max

{
1, κT

F

}
, we get that inequality (8) holds.

Recall now that dist
(
c,S

(
ξ̄
))

≤ ∥c− c̄∥ because c̄ ∈ S
(
ξ̄
)
. Then, from (8) we get

dist
(
c,S

(
ξ̄
))

≤ κS∥ξ − ξ̄∥. (9)

Finally, observe that c in (9) could be any threshold in S(ξ) and the righthand side in
(9) does not depend on c. From this remark, we can conclude that

dist
(
ĉ,S

(
ξ̄
))

≤ κS∥ξ − ξ̄∥, ∀ĉ ∈ S(ξ). (10)

Therefore, taking supremum over ĉ ∈ S(ξ) in (10), we get the desired conclusion.

Remark 6. If in the preceding result we assume that the standing assumptions are
satisfied and if we change Lipschitz continuity with local Lipschitz continuity, the result
holds as well, with ξ 7→ S(ξ) being now locally Lipschitz continuous. This is due to the
fact that the set of admisible trajectories is locally bounded with respect to the initial
position; recall that the dynamics is continuous and the control space is compact.

4 The attainable thresholds

As we have discussed in the previous section, upper semicontinuity of the SST is
unlikely to hold, even in very simple cases as in Example 1. This is mainly due to
the fact that the SST is by definition unbounded. Now, this unboundedness is not
necessarily due to the data of the problem, but to the structure of the inequalities,
because we have that if c ∈ S(ξ), then c + v ∈ S(ξ) for any v ∈ Rm

+ . This hints that
some useful information can also be obtained from the thresholds that can be achieved
by some control.

Accordingly, let us define the Set of Sustainable and Attainable Thresholds (SSAT
for short) as all the possible thresholds in the SST that can be realized by some control:

SA(ξ) :=
{
c ∈ S(ξ) | ∃u ∈ U , ∀i ∈ [[1 : m]] such that max

k∈[[0:T ]]
gi
(
k,xu

ξ (k),u(k)
)
= ci

}
.

It is not difficult to see that

S(ξ) = SA(ξ) + Rm
+ , ∀ξ ∈ Rd.
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4.1 Lower semicontinuity and Lipschitz continuity

Similar arguments as the ones used to prove Theorem 5 and Theorem 6 can be devel-
oped for proving continuity properties of the SSAT. Here we provide the statement
and the sketch of the proofs. Notice that the assumptions of Theorem 5 and Theorem 6
agree with the assumptions in the first and second items of Theorem 7, respectively.
Theorem 7. The following statements are true:
1. Suppose that (H2) holds and that g(k, ·, u) is continuous on Rd for any u ∈ U

and k ∈ [[0 : T ]] fixed. Then, SA : Rd ⇒ Rm is lower semicontinuous.
2. Suppose that there exist κF , κg ≥ 0 such that F (k, ·, u) and g(k, ·, u) are Lipschitz

continuous on Rd of modulus κF and κg, respectively, for any u ∈ U fixed and
k ∈ [[0 : T ]] fixed. Then, ξ 7→ SA(ξ) is Lipschitz continuous on Rd.

Proof.
1. Take c ∈ SA(ξ). Then, there is u ∈ U such that ci = max

k∈[[0:T ]]
gi(k,x

u
ξ (k),u(k)). As

done in Theorem 5, for any sequence {ξn}n such that ξn → ξ, we have that

cn,i := max
k∈[[0:T ]]

gi
(
k,xu

ξn(k),u(k)
)
−→ max

k∈[[0:T ]]
gi
(
k,xu

ξ (k),u(k)
)
, ∀i ∈ [[1 : m]].

By setting cn = (cn,1, . . . , cn,m), we get that cn → c and by definition cn ∈ SA(ξn).
This completes the proof of this item.

2. Take ξ̄, ξ ∈ Rd be given and any c ∈ SA(ξ) (fixed but otherwise arbitrary). As in
Theorem 6, to conclude, we need to prove that there is κSA > 0 (independent of
c, ξ and ξ̄) such that

dist
(
c,S

(
ξ̄
))

≤ κSA∥ξ − ξ̄∥. (11)

Let u ∈ U be such that ci = max
k∈[[0:T ]]

gi(k,x
u
ξ (k),u(k)) and set c̄ ∈ Rm as

c̄i = max
k∈[[0:T ]]

gi

(
k,xu

ξ̄ (k),u(k)
)
.

Notice that

|c̄i − ci| ≤ max
k∈[[0:T ]]

|gi
(
k,xu

ξ̄ (k),u(k)
)
− gi

(
k,xu

ξ (k),u(k)
)
|.

Recall that from the proof of Theorem 6, it follows that for any j ∈ [[0 : T ]]

∥g(j,xu
ξ (j),u(j))− g(j,xu

ξ̄ (j),u(j))∥ ≤ κgκ
j
F ∥ξ − ξ̄∥.

Consequently, proceeding as done for proving Theorem 6, we get

∥c− c̄∥ ≤
√
m κgκ

k
F ∥ξ − ξ̄∥.

Thus, inequality (11) holds with κSA :=
√
m κg max{1, κT

F }.
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Proposition 1 also holds for the SSAT, however now the continuity of the
constraints mapping is required.
Proposition 8. Assume that the standing assumptions are satisfied. Moreover, sup-
pose that g(k, ·) is continuous on Rd×U for any k ∈ [[0 : T ]] fixed. Then, SA : Rd ⇒ Rm

has closed graph with closed and nonempty images.

Proof. Consider two sequences, {ξn}n ⊂ Rd and {cn}n ⊂ Rm, so that cn ∈ SA(ξn) for
any n ∈ N, with ξn → ξ and cn → c. By definition, we know that there is sequence of
controls {un}n such that max

k∈[[0:T ]]
gi(k,x

un

ξn
(k),un(k)) = cn,i for any i ∈ [[0 : m]]. As in

the proof Proposition 1, we may assume by compactness that there is u ∈ U such that
un → u with xun

ξn
(k) → xu

ξ (k) for any k ∈ [[0 : T ]]. Since the set [[0 : T ]] is finite, we can

assume that cn = g(k̂,xun

ξ (k̂),un(k̂)) for some k̂ ∈ [[0 : T ]] (passing into a subsequence

if necessary). Now, since g(k̂, ·) is continuous on Rd ×U, we get

cn = g(k̂,xun

ξ (k̂),un(k̂)) → g(k̂,xu
ξ (k̂),u(k̂)).

Therefore, c = g(k̂,xu
ξ (k̂),u(k̂)), and so, ci ≤ max

k∈[[0:T ]]
gi(k,x

u
ξ (k),u(k)). On the other

hand, since for any k ∈ [[0 : T ]] and i ∈ [[0 : m]] fixed we have

gi(k,x
un

ξn
(k),un(k)) ≤ cn,i,

it is not difficult to see that max
k∈[[0:T ]]

gi(k,x
u
ξ (k),u(k)) ≤ ci. Therefore, c ∈ SA(ξ).

Remark 7. Notice that, in the proof of Proposition 8, the continuity assumption on
g(k, ·) is fundamental for ensuring that c, the limit of the sequence {cn} belongs the
limit of the sequence {cn} is exactly g(k,xu

ξ (k),u) for some control u. If we assume
only lower semicontinuity on g(k, ·), as in Proposition 1, we cannot reach the same
conclusion, i.e., that that c can be attained by some control.

4.2 Upper semicontinuity

The question that rises now is what can we say about upper semicontinuity. To answer
this, notice that under the standing assumptions, we have that

mi(ξ) := min
u∈U

min
k∈[[0:T ]]

gi
(
k,xu

ξ (k),u(k)
)
> −∞, ∀i ∈ [[1 : m]].

Consequently, if mi(ξ) = (m1(ξ), . . . ,mm(ξ)) then

SA(ξ) ⊂ m(ξ) + Rm
+ .

In a similar way, if any gi is bounded from above or lower semicontinuity in (H3) is
strengthened to continuity, then we would also have that

SA(ξ) ⊂ M(ξ) + Rm
− ,
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where M(ξ) = (M1(ξ), . . . ,Mm(ξ)) and

Mi(ξ) := sup
u∈U

max
k∈[[0:T ]]

gi
(
k,xu

ξ (k),u(k)
)
< +∞, ∀i ∈ [[1 : m]].

This would mean that the SSAT has compact images, which can be useful to gain
properties such as upper semicontinuity. This is actually the case as we show next.
Theorem 9. Assume that the standing assumptions are satisfied. Moreover, suppose
that g(k, ·) is continuous on Rd ×U for any k ∈ [[0 : T ]] fixed. Then, SA : Rd ⇒ Rm is
upper semicontinuous.

Proof. As pointed out above we have that

SA(ξ) ⊂ K(ξ) := {c ∈ Rm | mi(ξ) ≤ ci ≤ Mi(ξ),∀i ∈ [[0 : m]]}, ∀ξ ∈ Rd.

On the other hand, it also follows that ξ 7→ mi(ξ) and ξ 7→ Mi(ξ) are lower and
upper semicontinuous, respectively. This implies that for any ξ̄ ∈ Rd and δ > 0 fixed,
there is a compact set K ⊂ Rm such that

K(ξ) ⊆ K, ∀ξ ∈ Rd, such that ∥ξ − ξ̄∥ ≤ δ.

Therefore, since the map SA : Rd ⇒ Rm has closed graph (Proposition 8), in the light
of [11, Corollary 1.1.1], we conclude that SA : Rd ⇒ Rm is upper semicontinuous.

5 Numerical experiments

We have discussed in the previous sections various conditions ensuring continuity
properties of the SST mapping S : ξ 7→ S(ξ). We now assume another point of view
and investigate numerically these properties on two renewable resource management
examples.

We first start by considering the setting of Example 3, whose dynamics is given
for any time k by

F (k, x, u) = f̃BH(x)− u ∀x, u ∈ R,
with f̃BH defined in Equation (4) being the Beverton-Holt dynamics extended to the
whole real line. We consider the same constraints mapping as in Example 2, that is,
g1(k, x, u) = −u and g2(k, x, u) = −x for any x, u ∈ R and k ∈ [[0 : m]]. This corre-
sponds to the competing goals of ensuring a sufficient yield while preserving a sufficient
stock. We can remark that this example satisfies the hypotheses of Theorem 6, ensur-
ing that S is a Lipschitz set-valued mapping. We now provide numerical simulations
showcasing this fact. We have considered the parameters K = 50 and r = 1.75, and
controls in U = [0, 25]. These numerical simulations were obtained using the algo-
rithm from [7] using an 131-points discretization for the set of attainable states and a
126-points discretization of the control space U.

Figure 2 shows that in this example, the SST appears to be Lipschitz continuous,
as predicted by Theorem 6. Indeed, we have fixed ξ̄ and considered several values
ξ ≥ ξ̄ in the experiments and highlighted a constant κS such that the distance of any
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(a) ξ̄ = 15, ξ = 30, T = 10.
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(b) ξ̄ = 15, ξ = 45, T = 10.
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(c) ξ̄ = 15, ξ = 45, T = 50.

Fig. 2: Plots of the two SST S
(
ξ̄
)
and S(ξ), with the points c(ξ, ξ̄) ∈ S(ξ) (denoted

with a cross) achieving the largest distance to S
(
ξ̄
)
, as well as its projection on S

(
ξ̄
)

(denoted by a diamond). The plots also showcase the circle centered at PS(ξ̄)(c(ξ, ξ̄))

with radius 1.1|ξ̄ − ξ|.

point in S(ξ) from S
(
ξ̄
)
can be bounded by κS|ξ − ξ̄|. In the case ξ ≤ ξ̄, we have

that S(ξ) ⊂ S
(
ξ̄
)
from Theorem 4. Note that we have used in Figure 2 the constant

κS = 1.1, for both T = 10 and T = 50. In comparison, Theorem 6 gives an upper
bound on κS that is equal to (1+ r)T . Our computations seem to indicate that in this
case, it is possible to have a Lipschitz constant that is uniform in T , leading to much
lower Lipschitz constant, and thus better robustness of the SST in face of errors on ξ.

We now turn to simulations for the dynamics with age classes described in Exam-
ple 4. We consider here only two age classes, meaning that d = 2. Therefore, the
dynamics reads as

F1(k, x, u) = f̃BH

(
2∑

j=1

γjvjxj

)
, F2(k, x, u) = x1e

−M+uF , ∀x ∈ R2, u ∈ R.

We consider the constraints mapping g1(k, x, u) = −u and g2(k, x, u) = −(x1 + x2).
Again, this example satisfies the conditions of Theorem 6, showing that S is Lipschitz
continuous. In order to conduct the simulations, we have used the algorithm from
[7], with a 2601-points discretization of the space of attainable states and a 201-point
discretization of U. We have considered the parameters γ = (0.2, 0.8), v = (0.3, 0.1),
M = 0.2, and F = 0.6, controls in U = [0, 2], and the time horizon T = 5.

Figure 3 illustrates the Lipschitz continuity of the SST in this example. Again, we
can observe that the maximal distance between a point on S(ξ) and S

(
ξ̄
)
is bounded

by κS∥ξ− ξ̄∥ for some constant κS (in Figure 3, we used κS = 2). Contrary to the first
example depicted in Figure 2, the state space is now only partially ordered. This can
lead to outcomes that are hard to predict. For instance, ξ = (9, 9) and ξ′ = (18, 0)
cannot be ordered, have the same total population, and their SST are very similar,
while the values ∥ξ̄−ξ∥ and ∥ξ̄−ξ′∥ are very different for ξ̄ = (3, 3). In the case where
one needs to evaluate the SST S(ξ) subject to measurement errors in ξ, this seems to
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(a) ξ̄ = (3, 3), ξ = (9, 9).
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(b) ξ̄ = (3, 3), ξ = (12, 12).
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(c) ξ̄ = (3, 3), ξ = (18, 0).

Fig. 3: Plots of the two SST S
(
ξ̄
)
and S(ξ), with the points c(ξ, ξ̄) ∈ S(ξ) (denoted

with a cross) achieving the largest distance to S
(
ξ̄
)
, as well as its projection on S

(
ξ̄
)

(denoted by a diamond). The plots also showcase the circle centered at PS(ξ̄)(c(ξ, ξ̄))

with radius 2∥ξ̄ − ξ∥.

indicate that some types of errors will have a larger impact on the resulting SST than
others, depending on the direction of the perturbation.

Overall, we have illustrated the Lipschitz continuity properties of the SST through
two renewable resource management examples, depicted in Figure 2 and Figure 3. In
the context of population dynamics, this property is crucial as it allows to bound the
perturbation of SST by the norm of the perturbation on the initial condition, which is
difficult to measure. Theorem 6 gives conditions on the dynamics and the constraints
mapping to ensure this property, and gives a possible Lipschitz constant. Our examples
allow us to reveal intriguing phenomenon that are not captured by Theorem 6. First,
we see in the example of Figure 2 that the actual Lipschitz constant of the SST can
be much lower than the one predicted by Theorem 6. Second, the simulations for our
second example, depicted in Figure 3 indicate that the direction of the perturbation
also impacts the magnitude of the perturbation of the SST. These two phenomenon
tend to make the SST more stable to perturbations than what was predicted by
Theorem 6, indicating future research lines for the sensitivity analysis of the SST.

6 Discussion and perspectives

The focus of this paper has been on discrete-time dynamical systems. This type of
model allows to simplify the mathematical content, while covering a wide range of
application in natural resources management, as pointed out in [10]. One of the main
advantage of this setting is that it allows us to treat mathematical models with mixed
constraints without the need of introducing additional structural assumptions on the
data of the problem, such as the bounded slope condition; see for instance [12].

It is not difficult to conceive that the results we have presented in this paper could
be transposed to continuous-time dynamical systems. On the one hand, a continuous-
time version of Theorem 6 could be obtained if a Gronwall-type lemma is available for
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trajectories of the dynamical system. On the other hand, if there are just state con-
straints, rather than mixed constraints, many of the arguments we have exposed in the
preceding sections should be, mutatis mutandis, useful for proving the corresponding
continuous-time versions. For example, it is well-known that under mild assumptions
on the data, we have the compactness of trajectories theorem and the Filippov’s selec-
tion theorem (see, e.g. [11, 13]). These two properties seem at first sight to be crucial
for proving Proposition 1 and Theorem 5 in the context of continuous-time dynamical
systems.

Concerning convexity properties, it is worthy to point out that a continuous-time
version of Proposition 3 seems to be possible to obtain in the light of the results
reported in [14, 15], by using the notion of cross-nonnegativity. It is also apparent
that one needs to investigate a representation of the SST in terms of a suitable value
function, that is, whether the SST can be represented as S(ξ) = {c ∈ Rm | Wξ(c) ≤ 0},
where for instance

Wξ(c) := min
u∈U

ess-max
t∈[0,T ]

max
i∈[[1:m]]

(
gi
(
t,xu

ξ (t),u(t)
)
− ci

)
, ∀c ∈ Rm,

with now U being the collection of measurable functions u : [0, T ] → U. Notice that in
this case, ensuring the existence of an optimal control is not as straightforward as in
the discrete-time setting, specially for problems with mixed-constraints. Compactness
of Trajectories is a delicate issue in that framework; see for instance [12].

Finally, while we have provided a result ensuring the Lipschitz continuity of the
SST, our numerical simulations reveal situations where the SST is more robust to per-
turbations of the input than we could foresee. These additional sources of robustness
seem intricate, but identifying them precisely is an important matter. Indeed, the sen-
sitivity of the SST with respect to error in the input is crucial in applications where
the initial conditions is often known with imprecision.

All these issues demand further analysis, and go beyond the scope of this paper.
We plan to treat them independently and report them in another manuscript.
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