Math 4031 - Advanced Calculus |

Instructor: Dr. Cristopher HERMOSILLA
Louisiana State University - Spring 2016

Week 1: Basic elements of Logic

The set of real numbers is the base of the Calculus. In these notes we will study the real
numbers from an axiomatic point of view, that is, using some prescribed rules, call@xioms

we will deduce several properties of the real numbers. To do so, one essential tool we require
is the Mathematical logiG which will allow us to understand how a proof of a theorem works.
Next week we will review another important tool,Set theory

1.1 Statements and Truth values

The basic object in logic is calledstatement , which is a verbal assertions characterized by
the fact that it has a unique truth value, that is, either true (T) or false (F). Statements are
usually denoted by the lettersp, q or r with or without subscripts.

Example 1.1. We can usep to denote the statement OParis is in FranceO amgfor the
statement OLondon is in ItalyO. In this example,is true and q is false.

Since each statement has a unique truth value, we can associate one with another statement
that has the opposite truth value. This is called thenegation of the statement and it is denoted
by p. This statement can be read a# is false that... or simply not p. The truth value of the
negation of a statement is described by the following table

8

F
T

| =

Example 1.2. The negation of OParis is in FranceO can be written as Olt is false that Paris
is in FranceO and, since the original statement is true, this negation is false.

As may seem clear, the negation of the negation of a proposition has the same truth value
as the proposition itself. To formally express this idea, we need to debPne brst what we mean
by claiming that two statements are the same. We say that two statementq and g, are
equivalent if they have the same truth values. In this case we write

p<—4q.

Note that the equivalence of two statements is a statement too, it can be either true or false.
Furthermore, the truth table that debnes this relation is given by
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In particular, we can check the following equivalence

(1.1) p <= p.

Algebra of propositions

Simple statements can be used to create composite statements, which will be cafieaposi-

tion . The fundamental property of a composite statement is that its truth value is completely
determined by the truth value of the statements that compose it and the connectors used to
create it. As we will see later, theorems, lemmas and corollary are examples of proposition
whose truth value is true.

Example 1.3. Let us consider the composite statement OParis is in France and London is in
ItalyO. We understand that this statement is false, and it will continue being false as long as
the false statement OLondon is in ItalyO is part of the composite statement.

In the preceding example we have used the verbal connectord to create aconjunction
of two statements. Symbolically, the conjunction of two statementp and g is denoted by

PAQ

and its truth value is the true if and only if both statements are true as well. This property is
summarized in the next table

On the other hand, if in the example above we would have used the verbal conneator
instead of and, the truth value of the statement would have been true. Furthermore, the
truth value of OParis is in France or London is in ItalyO is true and it is not going to change
if we replace the statement OLondon is in ItalyO by any other statement (true or false). A
proposition made with the connectoror is called adisjunction and is it denoted by

pVva.
The truth values of a disjunction are summarized in the following table
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Remark 1.1. Let us point out that in conjunctions and disjunctions the order in which the
statementsp and g appear is not relevant, that is,

PAQ<= QAP and pVvg<=qVp.

We can see this fact directly from the truth tables. In this case, we say that these connectors
are commutative .

It is not di! cult to see from the last two truth tables that conjunctions and disjunctions
are related by means of the negation operation (the negation of one provides a statement that
looks like the other one). These relations are known as tlize MorganOs laws and read as
follows

(1.2) pvVg<=PpAQ and pAQ<= pVa.

The proof of the brst De MorganOs law follows from the next truth table (the other De
MorganOs law can be proved in similar way and it is left as exercise for the reader).

|

m| | |||
T | M| H||la

For the purposes of this course, the most important propositions are theonditionals
or implications , which are of the formif p then g. This kind of statements allows us to
decide whether a deduction is correct or not. This is essentially the nature of any theorem in
mathematics, assume that a statemenp is true, and then deduce after a sequence of logical
steps, that another statementy, is also true. Symbolically, the implication is denoted by

pP==4q

and it is debned by the truth table

m| M - ||
T | M| -||a
o
= = | | |
o]
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As mentioned above, a theorem (or lemma or corollary), corresponds to the prst line in the
truth table. In other words, when the hypothesisp is satisbed (the statemenp is true), an
implication is true if and only if the consequence is true as well; if the hypothesis is false, the
implication is true regardless the truth value of the consequencg

There is an alternative way to debne a logical implication. If we look at its truth table, we
can see that it has only one case when it can be false, same as the the disjunction. It turns
out that the logical implication is equivalent to the following disjunction

(1.3) pVa.

To see this, it is enough to check its truth table, which is
plalp|pVvg
T|T|F T
T|F[F| F
FIT|T T
FIF|T T

Tautologies and proofs

The implication and the equivalence can be compared through the following proposition that
is always true (we leave the proof of this as exercise for the reader)

(p==a A (q==p) <= (p <= Q).
A proposition that is always true is called aautology .
Tautologies provides a way to write a particular statement in several terent ways. This
is very useful when trying to prove a theorem. Indeed, proving directly thap == q is true
can be very hard and we might need to explore other strategies to do it.

Proofs by contradiction

A proof by contradiction consists in assuming that the hypothesip is true and that the
negation of the consequence is true as well, and then reach another consequencehat is
false. The underlying idea behind this kind of proofs is to show that the statement

PAT
cannot be true. The logical explanation for this fact is based on the following tautology
(1.4) pP==0<= pAQ.

This tautology can be proved with truth tables, but we are now going to show an alternative
way to do it, using a sequence of equivalences that we have already presented. The proof of
the tautology (1.4) is as follows:

pP==qg<=pVv( (alternative debnition of an implication (1.3))
“—PAT (De MorganOs lawl(2))
<~ pAT (negation of a negation {.1))
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Proof by contraposition
The contrapositive of an implicationp ==- q is the following proposition
q==p.

As we will see shortly, the truth values of the contrapositive and the implication are the
same, and so they are equivalent as statements. Hence, a proof by contraposition consists in
assuming that the negation of the consequencgis true and then prove that the negation of
the hypothesis is also true.

To show that the implication is equivalent to its contrapositive we follow the next steps

p==0g<=pVv(q (alternative debnition of an implication (1.3))
< qVp (Commutativity of the connector or, Remark 1.1)
<~ qVp (negation of a negation {.1))
<~ q==07p (alternative debnition of an implication (1.3))

1.2 Quantibers

There are several situations in mathematics where the truth value of a statement depends on
some variables. For example, the equation+ 1 =0 is true if and only if x = —1, and in any
other situation, the equation if false.

We debne gropositional function  p(x) as an undetermined statement that assumes a
truth value whenever the variablex is Pxed. The variablex might be understood as a generic
parameter that belong to some collection of options.

Example 1.4. Let us consider the propositional function p(x) given byxQs in FranceO. The
truth value of p(x) depends onx and also on the collection whera is assumed to belong.
Indeed, if we suppose that is part of the collection of all national capitals, we have thai(x)
is true if and only if x is OParisO, otherwise, it is false. However, if assume thxabelongs to
the collection of all continental french citiesp(x) is always true.

The usual way in which propositional functions are turned into statements is by means of
quantibers. On the one hand, in the brst case in our example, the propositional function is
turned into a true statement if before the propositional function we writehere exists at least
one national capitalsx such that.... In mathematical terms, it is written as

Ix, p(x).

The symbold is called theexistential quantiPer and it is use to say a propositional function
p(x) is true for at least one elemenk.

On the other hand, in the second case in our example, by writinipr each continental
french cities x ... we turn the propositional function into a true statement. Symbolically, we
write this as

X, p(x).

The symbolV is called theuniversal quantiPer and it is use to express that a propositional
function p(x) is true for any possible choice we can make far
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Remark 1.2. When proving a proposition that includes the universal quantiber, we need to be
careful and prove it for a genericx. It is a common mistake to prove that a statemeri(x) is
true only for some instances (or even for only one!). The universal quantibPer makes reference
to any possiblex, and thus, it needs to be proved for any arbitrary case (not for a particular
one).

A statement written with the universal quantiber is false if we can bnd at least one element
Xo for which p(xo) is false. If such element exists, it is usually called eounterexample .
Following this reasoning, we can Pnd a way to compute the negation of the universal quantiPer.
Indeed, we have thatvx, p(x) is false, this means that for some, p(x) must be true. In other
words, we have

(1.5) VX, p(x) < 3x, p(x)
In a similar way, we have
(1.6) Ix, p(x) < Vx, p(x).

Notice that we can prove the equivalencel(6), by taking the negation in (1.5 and replacing
p(x) by p(x) when appropriate.

We Pbnish by reviewing a last quantiber that is a composition of the universal and existential
quantiber. We introduce theuniqueness quantiber , denoted byd! to indicate that there is
one and only onex for which a propositional functionp(x) is true. In mathematical terms, we
write

31X, p(x)

for the statement that is equivalent to
(3%, p(x)) A (VX ¥y, [(p(X) A p(Y)) == X = Y]).

In mathematics, when we want to prove that a statemeni!x, p(x) is true, we prst prove the
existence and then the uniqueness. Moreover, note that the negation of a uniqueness statement
consists in two parts, either there is noax such that p(x) is true or there are more than one
instances for whichp(x) is true. Formally, we have

X, p(x) <= (vx, p(x)) Vv (3x, 3y, [(p(X) A pY)) AX Z Y]).

This tautology can be proved using the De MorganOs law (we leave it as exercise for the reader).

1.3 Exercises

1. Show using truth tables that theand and or connectors areassociative with respect to
each other, that is, for any statementg, g and r we have

@ pA(QAT) <= (PAQ AT
(b) pv(qvr) <= (pvavr
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2. Show using truth tables that theand and or connectors aredistributive  with respect
to each other, that is, for any statement9, g and r we have

(@ pA(aVvr) < (pAQ V(PAT)
(b) pv(@AT) <= (pVAA(pVT)
3. Show that (p<=q) <= ([pATQ] V [pA q]) is a tautology.

4. Show without using truth tables that the next proposition is a tautology
(p==0 A(TVQAr]==Dp.

5. Determine the truth value of the statementsp, g, r and s by knowing that the following
proposition is true:
[s== (TrVr)]==[p==qASAT].

6. Prove that if Ix, p(x) == VX, p(x) is true, then p(x) is either true or false, regardless
the value ofx.

7. Let p(x) and q(x) be two propositional functions. Prove that if

(3%, p(x)) A (3, a(x))

is true, then the following proposition is also true

(3, p(x) Ad(x)) == (3%, p(x) Aq(x)).
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Week 2. Basic elements of Set theory

As we mentioned last week, we need to review some mathematical tools in order to provide
a self-contained exposition for the rest of the course. We have already studied basic notions
of Logic, we now turn our attention into Set theory This theory will allow us to set up the
notion of setand also the symbolic language we are going to use along the course.

2.1 Basic debnitions

The intuition tells us that a set is a collection of elements of some kind. For example, the set
D={0 1,2 34,5, 6,7 8 9

is a collection of symbols that we call digits. The seD is completely characterized by its
elements, and so, we can determine the truth value of the propositional function

p(x) I X is an element ofD.

Actually, the set D, can also be though as the collection of number that makeéx) true. In
general, if we denote byA the set to be debPned, the statement that describe the elements of
the setA is written as

X # A.

This is read asx belongs toA, and if its truth value is true, we implicitly understand that x
is an element ofA. The negation ofx # A, that is, x # A is read asx doesnOt belong # and
is denoted by

X# A

In practice, when we writex # A or x # A we are assuming that the corresponding statement
is true. Therefore, a sefA is the collection of all the elementx such that the statementx # A

is true, and we say that we know the sef if we can determine all the elements that make the
statementx # A true.

Remark 2.1. Note that the dePnition of set that we have adopted doesnOt take into account
the order of the elements nor if an element has been written more than once. This means that,
for us, the following are equivalent descriptions of the same set:

{0, 1}, {1, G} or {0, 1, C}.
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The usual way in which sets are denoted is through capital letters such AsB or C (with
or without subscripts), and sometimes, to denote especial sets, we use more sophisticated
letters such asN, Z, Q or R.

Remark 2.2. At brst glance, we might think that any debnable proposition such as
xI A% p(x)

is enough to debne a sét. This is not correct and a classical counterexample is the so-called
RussellOs paradox. In simple words, this paradox considers the collection of setghat donOt
belong to the themselves, that is,

x! R # x I x.

If the collection R is assumed to be a set, this readily leads to
RI'R#% RYVR,

which contradicts the very debnition oR. In order to avoid this kind of paradox, mathe-
maticians needed to introduce some rules to operate with sets, which are calledzbenelo-
Fraenkel axioms ; the underlying idea is that sets must be constructed in some way from
previously constructed sets. We shall not discuss the Zermelo-Fraenkel Theory in details, but
will mention it sometimes along these notes. The curious reader is referred 1¢ for a concise
exposition on the subject, or to4, Chapter 7] for a shorter presentation.

2.1.1 Some important sets

In these notes we are going to accept that the real, natural and integer numbers are sets,
which we denote byR, N and Z, respectively; a rigorous proof of this fact goes far beyond the
scope of this course. We may assume that'ON, and so we can construct the set of rational
numbers, denoted byQ, as

Q={x! R|$n! Z, $m! Z, m&%0 & mx = n}.

Remark 2.3. Let us point out that we have debned the rational number using the following
scheme

xI'Q*#% [x! R & p(x)].

Note that this di ers from the way how the RussellOs paradox has been stated. The essential
point here is thatQ is constructed as a subcollection of the set of real numbers and the RussellOs
paradox is done as a subcollection of some Ouniversal setO. We will see shortly that the notion
of Oset of all setsO is not suitable for a consistent mathematical theory.

We debne theempty set as the set that contains no element at all. This set is denoted
by ' and it admits several alternative debnitions, although it is existence is accepted within
the Zermelo-Fraenkel axioms. | f a set has at least an element, we say that inisnempty .

2
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2.1.2 Inclusion and equality of sets

Together with the notion of set comes that one of subset, which intuitively is a collection of
elements that belong to the initial set and that satisfy some further properties; see for example
the discussion in Remark.3. Formally, we say that a setA is a subset oB, we write A! B,

if and only if the next proposition is true

(2.1) "X, (x# A=$ x# B).

Example 2.1. Let D be the set of digits, and let A be the set of even digits, that is, {0, 2, 4, 6, 8}.
We see that whenever the statement X # A is true, we also have that X # D is true, and thus,
the proposition (2.1) is also true (for D in place of B ).

In what follows, when we writeA ! B we are implicitly assuming that the statement 2.1)
is true. Moreover, with a slight abuse of notation, we may us& ! B equivalently as .1).

There are two situations to be considered. EitheA is strictly included in B or, A and B
have the same elements (they are equal). In the brst case we wékeé B to indicate that

Al B % [&, (x# B %x # A)].
We say in this case thatA is a proper subset of B.

Remark 2.4. We always have that ' is a proper subset of any nonempty set A. This fact
comes from the very definition. Indeed, the statement

X#' =% x#A
s always true, regardless A, because the statement X #' s always false.

On the second case, we writd = B to indicate that A and B are equal, that is, that the
following proposition is true

"X, [(x# A =% x#B) % (x#B =% x#A).

Furthermore, from the debPnition of the inclusion we have the following characterization of
the equality of set

(2.2) A=B @& [(A! B) %(B! A).

Remark 2.5. The characterization (2.2) will play a fundamental role in the upcoming discus-
ston. Indeed, this shows that to prove that two sets are the same, we need to prove that each
one of them is a subset of the other. This is very similar to the fact that to prove p@ Q, we
prove p=$ g and q=$ p separately.

Power set

Given a setA, we call thepower set of A, written as P (A), to the collection of all the subsets
of A, including the empty set. In this notes we assume that the power set is actually a set
(this is one of the Zermelo-Fraenkel axioms).

3
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Example 2.2. Let A= {0, 1, 2}, then its power set is
P(A)={! {0, {1}, {&, {0 1}, {0 &, {1 2, {0, 1, Z}.

In the preceding example, since we can list all the elementsAfit is not difficult to provide
an explicit expression ofP (A). In other situations this is not possible and we might need to
Pnd alternative ways to do it. This is the case dP (N), the power set of the natural numbers.
It is not possible to write down each of the elements & (N). For the moment, we just relay
on the formal depPnition to describe it, but we will show one way to express it later on.

2.1.3 Cardinality

We say that a setA is Pnite if it has a Pnite number of diferent elements. This means that
we can count the elements oA bPnishing at some point. Furthermore, we can associatewith
a natural number, called thecardinality of A, that corresponds to the number of (dierent)
elements ofA. We denote the cardinality of a Pnite sefA by |A|.

Note that in Example 2.2 the setA has 3 elements andP (A) has 2 = 8. This is because,
A has a single subset with 0 elements (the empty set), 3 subsets with 1 element, 3 subsets
having 2 elements and a single subset having 3 elements (the same set). This remark is not a
coincidence and it is a general fact.

Theorem 2.1. If A is a bnite set, then|P (A)| = 24l

Proof. Let n" N be the natural number that representdA|. Let us Prst answer the question
of how many subsets oA having k elements we can bnd. We claim that the answer is

53 I%“? n!
(2:3) k — ki(n# k)!

Note that there is a single subset of that contains k = 0 and k = n, respectively. These are
the empty set and the whole seA. Clearly, the claim holds in these cases.

On the other hand, suppose that we can assign an order to the elements of any subset of
A that has k elements. For the brst position we have options, but for the second one we
only haven # 1 options (one then # 1 elements remaining). We can continue the process and
see that for the third position we only haven # 2 options and so on. We end up having only
n# k + 1 option for the k-th position. If we count all the possible combinations, we get

n!

nn# 1)(n# 2)...(n# k+1) = (n#—'k),

possible subsets oA considering the order we have described above. However, subsets donOt
take into account the order of their elements; see Remark
Finally, the number of all possible subsets oA is
N | N Y | 11 1 [
Ny n+___+ n+___+ n P
0 1 k n#1 n k

k=0

=(@1+1)"=2",

where we have use the so-called binomial theorem. ]
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If a set is not Pnite, we say that it isinPnite . Let us point out that the natural, integer,
rational and real numbers are all examples of inPnite sets. However, the kind of inPnite that
each of them represents is slightly derent. The natural, integer and rational are examples
countable sets. The idea of countability refers to the fact that we can count the elements of
N, Z or Q even though we will never bPnish doing so. It might seem counterintuitive, but it
can be proved that the OnumberO of elementshifZ and Q, which is also called cardinality, is
the same for all these sets. The cardinality dfl is denoted by the symbol o, which of course,
is not a number in the usual sense.

This topic (as well as a proper debnition of the phradeaving the same cardinalityrequires
further developments. We will stop the discussion shortly and resume it later on the course.
But, in order to motivate the readerOs curiosity we make the following remark.

Remark 2.6. When A is a bnite set, Theorem2.1 is implicitly saying that P(A) has more
elements thanA. This fact is also true when dealing with inPnite sets and it is called the
CantorOs Theorem . This result has two important conseqguences:

a) It can be proved that the cardinality of real numbers is the same as the cardinalityRdiN);
we will prove this later on the course. Hence, the cardinality & is strictly bigger than
I o, Which vyields to the idea that some inPnities are bigger than others. Consequently,
the set of real numbers is said to bencountable .

b) CantorOs Theorem rules out the existence of a Oset of all setsO. Indeed, if such set exists,
then its power set must have more elements than the Ouniversal setO and so there is at
least a set that doesnOt belong to the Oset of all setsO. This contradicts the depnition of
the Ouniversal setO, and so, a Oset of all setsO canOt exist in our setting.

2.2 Basic set operations

In what follows, we assume thatA and B are subsets of a given reference s¢t, the setX is
sometimes called thainiversal set and it is supposed to be understood from the context one
is working in; note that this notion di! ers from the idea of Oset of all setsO.

We debne thedi! erence betweenA and B, written as A\ B, as the set that contains all
the elements ofA that are not in B. Formally,

x" A\VB # [(x" A) %(x! B)].

Example 2.3. Let D be the set of digits, and the set of even digits. TheD \ E is the set
of odd digits, that is,
D\E={1, 3,5 7, 9.

When X plays the role ofA, the setX \ B is called thecomplement of B (with respect
to the universal setX), and it is denoted byB°.

Example 2.4. When taking the complement of a set, it is important to understand who is
acting as the universal seK . For instance, in Example2.3 if we takeD as X, we have that
the complement ok, the set of even digits, is the set of odd digits. However Xf is taken as
N, then E° includes the set of odd digits as well as other natural numbers.

5
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Recall that the contrapositive is equivalent to the original statement. Hence by the debni-
tion of the inclusion we have

Al B % [$x,(x %B) =# (x %A)].
Now, by the debnition of the complement, we get the following identity:
Al B'# B°! AS

We debne theunion of A and B, as the set that joins all the elements oA and B.
Symbolically, we write A & B and its depbnition is

X %A &B # [(X%A) ' (X %B)].
Some essential properties of the union are listed below
1. A&A = A: this is clear from the depPnition.

2. A! A &B: this follows from the tautology

X %A =# (X %A ' X %B).

3.IfA! CandB! C,thenA &B ! C: to prove this we follow the next logical steps:

A&B! CH# $ x, X%A ' Xx%B)=# x %C
H$ X, X%A ' X%B)' X %C
3 X, XWA ( x%B)' X %C
H$ X, XA ' xX%C)( x%WB ' x%C)
" $ X, (X%WA ' X%C)( (Xx%B ' x%C)
P X, XWA =# X%C)( (Xx%B =# X %C)

W Al C(B!C

4. A&A° = X: sinceA! X and A°! X, by property 3 we getA & A°! X. Therefore,
to prove the equality we only need to prove thaiX ! A & A€, but this is a consequence
of the following tautology:

X %X =# (X %A ' x%A).
5 IfA! BandC %P(X),then A&C! B &C: by property 2, we haveA! B! B &C
andC! B &C. Then the result follows from property3.

6. A&) = A: by property 2we haveA! A&). Also, since)! A andA! A, by property
3we getA &)! A.

7. A& X = X: by property 2 we haveX ! A & X. Moreover, sinceA! X andX ! X,
by property 3 the conclusion follows.
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Also, we debne thentersection of A and B, denoted byA! B, as the set that contains
the common elements betweeA and B. In other words,

X" Al B # [(x" A) %(x" B)].

Some essential properties of the intersection are listed below, and their proofs are left as
exercise for the reader.

1. Al A=A

2.A! B&A.
3.IfC&AandC & B,thenC & A! B.

4. Al A°=".

5. A&BandC" P(X),thenA! C& B! C.
6. Al'" =".

7. Al X = A.

By the commutative, associative and distributive properties of thé&cand ( connectors, we
can see that the union and intersection of sets satisfy similar properties, that is, supp@ses
another subset ofX , then

¥ Commutativity: A) B=B) AandA! B=B! A.
¥ Associativity: A) (B) C)=(A) B)) CandA! (B! C)=(A! B)! C.
¥ Distributivity: ~ A) (B! C)=(A) B)! (A) C)andA! (B) C)=(A! B)) (A! C).

In general, we can also consider families of subsetsXfwith arbitrary large number of
elements, sayn " N. In this case, we might use the notatio{ Ac};-, to indicate the set of
P(X) whose elements aré\o, Ay, ..., A,. We can then debne the union ofAy};_, as the
following set

!n
Ac={x" X | *k" {0,....n}, x" A}
k=0

In a similar way, we can debne the intersection of the elements{&} ;_, as the following set

"
Ac={x" X | +k" {0,....n}, x" A}
k=0

#
If A1 B ="' we say that they aredisjoint , and if ,_, Ax = ', we say that{As}[_, is a
pairwise disjoint family.
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Remark 2.7. Note that, by the commutative and associative properties, it doesnOt matter
the order in which the union or intersection are taken, so the notation we have chosen is
consistent. Furthermore, the debnition of union and intersection of a bnite family of sets can
also be extended to any inPnite family of sef#\}« « indexed by a seK (countable or not)
in the following way

| "
Ag={x! X | "k! K, x! A} and A= {x! X | #k! K, x I Ax}.
k! K k! K

By applying the De MorganOs laws to the debnitions of the union and intersection, we get
the following identities

(A$B) = A°%BS and (A%B)°= A°$ BC.

ltis not di! cult to see that, if {Ac}7_, is a Pnite family of sets, then the De MorganOs laws
provides the following identities

# $. # $,

" In In

We left as an exercise for the reader to prove that this is also true f§Ax}« k, an inPnite
family of subsets ofX .

2.3 [Exercises
1. Let X be a nonempty set ancE & X . Suppose that the following proposition is true
#A, B! P(X), (E%A=E%B = A=B).
Then show thatE = (.
2. Let A and B be subsets of a given seéX. Show that
A$B=() P(A)$SP(B)= {(}.
Hint: Prove (= ) by contradiction and () =) by contraposition.
3. Let A and B be subsets of a given seX ..

(2) Show that( ¥ P(A)\P (B).
(b) Prove that P(A\ B) & (P(A)\P (B)) %{(}.

(c) Give an example of seA and B such that
P(A\ B) = (P(A)\P (B)) %{(}
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4. Let us consider the set operation debned via
Al B = A"l BS
Let X be a nonempty set and " P(X) be a nonempty set such that
#A, B $! Al B$!.
Show that if A, B $ ! , then

(@) A°$ ! .
(b) Al BS$! .
c) A%B $ ! .

Conclude that& $! and X $ ! .

5. Let A and B be subsets of a given seX. Show by contraposition that

[(A°! B)%(A! BY=B = (A= 8.

6. Let A, B and C be subsets of a given seX. Prove that

AlB! C=8&= (A\B)%(B\ C)%(C\A)= A%B %C.
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Week 3: The Real numbers

We start now the study of the set of Real numbers, which we have denoted By As we said
the prst week, our exposition will be based on some prescribed rules, caligmbms that will
allow us to provide a consistent description of the set of Real numbers. The axioms we will
present can be divided into three groups: algebraic, order and the supremum axiom.

3.1 Algebraic properties of the Real numbers

First of all, we write x = y to indicate that the Real numbersx andy are the same; otherwise
we write X £ y. Formally speaking, = is a relation onR that can be debPned using the equality
of sets as below:

"X,Y#R, x=y ® {x} = {y}.

We now consider two basic operations debPned &) the sum (+) and product (g of Real
numbers. We will write
X+y and X ay

for the elements obtained respectively as the sum and product of two Real numbgrand y.

It may sound familiar to you that the sum and product of Real numbers is a Real number
We donOt prove this statement and just accept it as a prescribed rule. Actually, this is the brst
axiom for Real numbers we are going to study and it is known as tletosure axiom :

(Ao) "X, Yy#R, x+y#R & xay#R

Each of the operations, sum and product, has four additional axioms associated with it.
These are the associative, the commutative, the additive/multiplicative identity and the addi-
tive/multiplicative inverse axioms. In mathematical terms, these rules are written respectively:

(A1) "X,¥,z#R, (X+ty)+tz=x+(y+z) & (xay)az=xa(yaz)
(A) "X,y # R, X+y=y+X & Xay = yax

(A3) '0, 1# R, 0E1, "X#R, x+0= X & "X# R, xal = x
(As) "x#R\{0}, 'ly#R,x+y=0 & '1Z#R, xaz=1

In the last axiom, the Real numbersy and z are called theadditive and multiplicative
inverses, respectively. Since for any # R there is a unique inverse, we normally use the
notation ( x and x' ! to indicate such elements. Note that the additive inverse of 0 has not
been debned inA,). However, it is not di! cult to prove, using (As) and (A,), that O is the
(unique) additive inverse of 0; we leave this as exercise for the reader.
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Remark 3.1. Note that (A3) provides the existence of at least two!drent Real numbers: 0
and 1. Therefore, using the sum we can construct other numbers, such as the Naturals via

2:=1+1, 3:=2+1, 4:=3+1,...
Here the notationa := b means that the symbad is dePned with the valué.

The sum and product of Real numbers are related via an algebraic relation called the
distributive  axiom, which can be expressed as follows

(As) 'x,y,z" R, (x+y)az=(xaz)+(yaz) # za(x+y)=(zax)+(zay).

The six axioms we have presented are enough to derive several properties of the Real numbers.
For example, we can prove the so-callesjuare of a binomial formula

(a+ b)?= a’+2 a(adb) + 17,

where the notationx? stands for the productx ax, which is called thesquare of x. Let us see
a detailed proof of this formula:

(a+ b?=(a+ ba@a+ b (DePnition of the square of &+ b))
= aaa+ baa+ aab+ bab (Axiom (As) used twice)
= aaa+ aab+ aab+ bab (Axiom (Ay))
= a’+ adb+ adb+ I (Debnition of the squarea and b)
= a’+1 &(adb)+1 a(adb) + ¥ (Axiom (A3))
= a2+ (1+1) 4@adh+ 1P (Axiom (As))
= a’+2 4ad) + B (DePnition of 2)

Other properties of Real numbers based on the axioms are:

(1) x40 =0: By (As3) and (As), x &0 = x &(0 +0) = x a0 + x a0, the adding$ (x a0) in the
equality, we get the result.

(2) $(x+y) =($x)+($y): Remark that (x + y) +($x) +($y) = 0 This is a conse-
guence of the associative and commutative axioms. Then, the conclusion follows from
the uniqueness of the additive inverse of + vy.

(3) x a($y) = $(x ay): We need to show thatx ay + x &($y) = 0. Using (As), (Az) and
property (1), we getxay+ x&$y) = xay+ $y) = x & = 0, which completes the proof.

(4) xay = ($x) &$y): Using property (3) and (A,) twice each, we get
($x) &$y) = $(($x)ay) = $(ya$x) = $($(yax)) = $($(xay)).
Itis not di! cult to see from @A,), that $ ($ (x &y)) = x &y, and so the conclusion follows.
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From the sum and product we can dePne new operations Bn For example, thesubtrac-
tion (-) and division (/) which are debned via:

IX,y" R, y#0, x$y:=x+(3y) %xly :=xa'™

Remark 3.2. Since the additive inverse 00 is well debned (it isO itself), we can extend the
subtraction for the casey = 0. Under these circumstances, we just get

XxX$0:=x+0= x.

Nevertheless, it is not possible to do the same for the division without getting some inconsis-
tency with the axioms; this is essentially because the multiplicative inversedafan not exist.
For example, suppose thdl' ! exists and it is a Real number. Then, on the one hand we have

040 *=1.
But, on the other hand, by axiomgA3), (A4) and (As)
0=04a0'$0a0'=(0+0) a0'*$ 040 '=04a0'+04a0'*s 040 =040 "*=1.

This conclusion contradicts axiom(A3).

3.2 Order axioms

So far, we know that Real numbers can be summed o multiplied, but we donOt know how to
compare them. To do so, we introduce aorder relation (&), which satisbes the following
axioms:

(Oy) I'x" R, X & X (RelRRexivity).
(02) Ix,y" R, X&Yy %y&x) = x=y (Antisymmetry) .
(O3) I'x,y,z" R, X&Yy %y&z) = xX&z (Transitivity) .
(O4) Ix,y" R, X&Yy ( y&X (Comparability) .

The statementx & y is read asx is less than or equal toy and we say thatR is a totally
ordered set . We can also reakk & y asy is greater than or equal tox.

Remark 3.3. Let us point out that by the RelRexive axiom, the converse of the Antisymmetric
axiom holds true, that is

I'x,y" R, x=y = (X&Yy %y&X).
This means in particular that
X&Yy %x=y ) X =Y.

We leave the proof of the last equivalence as exercise for the reader.
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From the order relation! we can debne other order relations. For example, we say that
is less thany, written as x <y, if and only if

xy" xX#y.

This new order relation satispes neither the axiom®(), (O,) nor (O4). However, its utility
is re3ected in the next trichotomy result.

Theorem 3.1. For any X,y $ R, only one of the following statements is true
X<y, X =y or y <X.

Proof. Let us Prst check that the statements are mutually exclusive. Let,y $ R be bxed but
arbitrary.

¥ Suppose thatx = y, then x # y is false and thus, neithexx <y nory < x can be true.

¥ Suppose thatx # vy, then clearly x = y is false. Furthermore, by the Comparability
axiom (O4) we have that eitherx ! yory! xistrue. Note thatx! yandy! x can
not be both true at the same time, because otherwise the Antisymmetric axion®©f)
would imply that x = y which can not be. Therefore, by the debnition of, eitherx <y
0y < X, but not both at the same time.

In order to complete the proof, we need to show that at least one of the statements is true.
By the Comparability axiom (O,4), we have that eitherx ! yory! xis true. Without loss of
generality, we can assume that ! vy; if y! X, we use the same arguments but switching the
roles ofx andy. We claim that

X'y %& (x<y)' (x=y).
Indeed, this follows from the following reasoning

X! yo& x!y" (x#y' x=y)
% (X! y" x#yYy) ' X!'y" x=y)
% (x<y) ' (x=Y)

This mean that eitherx <y or x = y is true, and so, at least one of the statements is true.[]

Theorem3.1allows us to represent the set of Real numbers as a horizontal line that extends
inPnitely in both directions. This means that each Real number can be associated with a point
in the line, and for anyx,y $ R, if X <y we have thatx appears at the left ofy. Otherwise,

X appears at the right ofy.

[ 24
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The order relation we have introduced can be related to the sum and product by means of
the following Compatibility axioms:

(Cy) I'x,y,z" R, X#y =% Xx+z#y+ z
(Cy) I'x,y,z" R, X#Yy %O0O# z=% xaz# yaz.

Moreover, the following properties can be derived from the preceding axioms:

(@) x#y =% & y#&x: Sincex # vy, in the light of (C;) we get 0 =x & x # y& x. Hence,
adding &y to the last inequality and, using ;) and (A,), we get the desired inequality.

(b) x#y %z# 0=% yaz# x &z: By property (a), 0# & z, and so by C,), we get
&(xaz) = x&(&z) # ya(&z) = &(y az).
The conclusion follows from property(a) and the fact that a = &(&a).

(c) O# x2: If 0 # x, the result is a direct consequence ofCf). If on the contrary, x # O,
the result follows from property (b).

(d) x<x +1: Itis clear that x = x + 1, otherwise we get 0 = 1. Furthermore, by property
(c) we get that O# 12=1 &1 = 1. Hence, by C,), we obtainx = x +0 # x + 1.

(e) 1# x =$ x# x? Since O# 1, by(O3) we get in particular that 0 # x, and so by C,)
we getx =1 ax # x ax = x2.

(f) x# 1 %0# x=$ x2# x: Similar as the proof above.

() x# y%0<x =$ y' 1# x'1 Letus brst prove that 0< x' 1. Suppose by contradiction
that 0 < x' ! is false. This means tha' ' # 0, and by Theorem3.1, we must have that
x' 1 < 0. Hence, by property(b), we get 1 =x &x' * # 04ax' ' = 0. Which is impossible,
so we must have < x' 1. In the same way, we can prove that & y' 1. Therefore,
multiplying the inequality x # y brst by x' * and theny' 1, we get the result wanted.

3.2.1 Some particular subsets of R

The order relations we have introduced are also helpful to debPne new subset®fkpfcalled
intervals . For any a,b" R with a# bwe debne:

¥ The closed bounded interval : [a,f:={x" R| a# x % x# b}.

¥ The open-closed bounded interval : (a,d:={x" R| a<x % x# b}.

¥ The closed-open bounded interval : [a,b:= {x" R| a# x % x<b}.

¥ The open bounded interval : (a,b:= {x" R| a<x % x<Db}.
Remark 3.4. For the extreme case = b we have thafa,j =[a,a] = {a} but

(a,b=(aa=[ab=[aa=(ab=(a3a= (.
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We might also consider the followinginbounded intervals
e The closed unbounded intervals

[a,+00) = {xeR| a<x} and (—oo,b:={xeR| x<b}.

e The open unbounded interval

(a,+o0):= {xeR| a<x } and (—oo,b):= {xeR| x<b}.

Here the symbols 0 and —co are only used for sake of notation, which means that they
donOt have a meaning by themselves. Furthermore, the intervals+06c) and (—oc, 0) will be
particularly interesting. We say that x is a positive Real number ifx € (0, + o). Similarly,

X is said to be anegative Real nhumber ifx € (—oc, 0).

3.2.2 The absolute value

We debne the absolute value of a Real nhumbgr denoted by |x|, as the Real number that
agrees withx, when the latter is positive and with—x when x is negative. In other words,

_ X if 0 <x
x| = :
—Xx ifx< 0

Note that by dePnition, |x| = | — x| for any x € R.
The absolute value will play a crucial role when studying sequences and convergence. For
the moment, we restrict our attention to some of its basic properties:

(i) x < |x|: Note that we always have < |x|, so ifx < 0, the result is straightforward. On
the other hand, if 0< x, then |x| = X, so the conclusion follows as well.

(i) (triangular inequality ) |x +y| < |x| + |y|: By property (i) we have thatx < |x]|,
—x < |x|, y < |y| and —y < |y|. Hence. if on the one hand we have € x + y, then
Ix+y| = x+y < |x|+|y|. Onthe other hand, ifx+y < 0, then 0< —(x+y) = ( —X)+( —Y)
and so|x + y| = (—x) + (—y) < |x| + |y|, and the proof is complete.

(i) |x -yl = |x]-|y]: We might assume thatx ¥ 0 and y # 0, otherwise the result is
straightforward. To complete the proof we need to put on cases. We are only going
to do the casex < 0 and 0< vy, the others remain as exercise for the reader. In the
circumstances we described beforg| = —x and |y| = vy, but x -y < 0 (this is because

(Cz) and property (b)), then |x -y| = —(x-y) = (—Xx) -y = [X]-|y].

(iv) ||x| —|y|| < |x —y|: Let us assume without loss of generality that)x| — |y|| = |X| — |y|.
By (A4) and the triangular inequality we get|x| = [x =y + y| < |x —y| + |y|. Finally,
adding —|y| in the last inequality we get the result wanted.

(v) Foranyace (0,+00), [x] <aifand only if —a<x A x < a: By property (i) and (Oz)
we immediately havex < a. Moreover, by property (a)), we get that —a < —|x| and
—Ix| = —=| = x| < —=(—=x) = x. Thus, by (O3) we get—a < x, which completes the proof.
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3.3 The supremum axiom

Note that if we replace, in all the axiom we have presented, the sBt by Q, the axioms still
make sense. This could wrongly yield to the idea that the set of Rational and Real numbers
are the same. There is another axiom, called thBupremum axiom , that will allow us to
distinguish Q from R; see Exerciséd.

Let us now introduce some debnitions. Given a subsat! R, we say that it is bounded
above if

(3.1) "M #R, $x#A, X %M.
In a similar way, we say thatA is bounded below if
(3.2) "m#R, $x#A, m %x.

Any Real number that satisfy 3.1) or (3.2), is calledupper orlower bound of A, respectively.
If A is bounded below and above, we just say that it is hounded set.

Example 3.1. The debPnition of bounded set is consistent with the dePnition of bounded in-
tervals we have done. Indeed, for arg, b# R with a % b, the intervals

[a,8, [a,b, (ab and (ab

are all examples of bounded set. Heeeis a lower bound andb is an upper bound for any of
those subsets. Notice as well that the unbounded intervals

[a,+&), (a,+&), (& ,bf and (& ,b

are not bounded, but the pbrst two are bounded belaig a lower bound) and the last two are
bounded abovel(is an upper bound).

Note that in Example 3.1, any number greater thanb is also an upper bound for any of
the bounded intervals, but there are no other Real numbers, less théarthan can be an upper
bound of any of the bounded intervals. In other worddj is the least upper bound we can bnd
of, for instance,A =[a,b. In this case, we say that this upper bound is thsupremum of
A and we denote it by supf). In mathematical terms, M = sup(A) if and only if M is an
upper bound ofA and

SN #R, [($x# A, Xx %N) =( M %N].

From this dePnition we can see that the supremum is uniquely determined (verify this, suppose

there are two di erent supremum and then conclude using the Antisymmetric axiom).
Analogously, we debne thenPmum of A, denoted by inf(A), as the Real numbem that

is a lower bound ofA and such that

Sn#R, [($x# A, n%x) =( n%m].
Example 3.2. We have that for anya, b# R with a%b

b= sup([a, b) = sup([a, ) = sup((a, b) = sup((a,b) = sup(('& , b)) =sup(('& ,b)
a=inf([ a H) = inf([ a,b) = inf(( a,b) = inf(( a,B) = inf([ a,+&)) = inf(( a,+&)).
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In the special case that infA) ! A, we say that inf(A) is the minimum of A. Analogously,
when sup@) ! A we say that sup@) is the maximum of A. In this case, we change the
notation, and we write min(A) and max(A), for the minimum and maximum of A, respectively.

Example 3.3. We have that for anya,b! R witha" b
b=max([a, ) = sup((a, b) = sup((#$ ,H))
a=min([a,) =inf([a,b) =inf([ a,+$ )).

We are now in position to state the Supremum axiom. This says that for any nonempty
bounded above subset dR its supremum is a Real number, that is,

(S) W ! P(R)\{ &, (A is bounded above = sup(A)! R).

As we mentioned earlier, this is what distinguistik from Q, because, as you will see in Exercise
7, not every subset ofQ has a supremum that is also a Rational number.

Remark 3.5. The Supremum axiom has a counterpart, the InPmum axiom which says that
for any nonempty bounded below subsetR®fits inbmum is a Real number. We leave the proof
that both axioms are equivalent as exercise for the reader.

One of the main consequences of the Supremum axiom is that the set of Real numbers is
Archimedean . This is summarized in the next theorem.

Theorem 3.2. R is Archimedean, that is,
(3.3) Ww,M ! (0,+3%), (n! N, M<n &
Proof. We divide the proof into three steps:

1. Let us brst prove that N is not bounded above. We argue by contradiction, that is,
suppose thatN is bounded above. Since it is also nonempty (1N for instance), by the
Supremum axiom, supll) is a Real number. In particular, sup{N) # % is a Real number
that can not be an upper bound oiN. So, there isn! N such that

sup(N) # % <n.
Then, adding 1 in the inequality, we get
sup(N) + %< n+1.
But, by debnition,n+1 " sup(N), becausen +1 ! N. Thus, by (Os)
sup(N) + % " sup(N),
which is not possible, and consequentlyy is not bounded above.

2. To bnish, let us also use a contradiction argument again. Suppose th&3) is false,
then its negation is true, that is
(X,M ! (0,+3$), %! N, nax" M.
Since,x ¥ 0, we get that M &x' 1! R and it is an upper bound ofN, which contradicts
what we proved in the brst step. Therefore, the conclusion follows.
O
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3.4 Exercises

1. Let x,y,z,w! R with y,w = 0. Prove, mentioning each of the axioms and properties
you are using, that

xay' '+ zaw' ' = (xaw+ yaz) a(y aw)' !

2. Letx,y,z,w! R such that (xaw)+(# (yaz)) = 0. Prove, mentioning each of the axioms
and properties you are using, that

(x+y)aw) +(#(z+ w)ay)=0

3. Prove, detailing each step you do, the following properties:
(@) $x,y! R, 2&(x ay) %x?+ y2.
(b) $x! (0,+&), 2%x+ x' L.
(c) $x! (0,+&), 1+2 a&x % (1+ x)2.
(d) $x,y! (0,+&), 4ax+vy) 1%x't+y" 1
(e) $x,y,z! (0,+&), xay+ xaz+ yaz %x?+ y>+ 72
f) $x,y,z! (0,+&), 8axayaz % (x +y) a(y + z) a(z + x).
4. Prove, detailing each step you do, the following properties:
(@ x+y+z=1"' xvy,z2-0 =( 8% (X' '# 1ay *# 1)alz # 1).
(b) xayaz=1 =( 3%x+y+ z
(c) $z! (0,+&), x<y +z =( X %y.
5. Show that for anyx,y ! R,

(@) if x,y =0, then [x&" *# ya' | % 3 4(Ix|+ X' *ay#y' *[+(lyl+ Iy ) ak# x*" *])].
(b) Ix| Yomax({|x# yl, |x + y[}).

Hint: Argue by contradiction and show that for anyt ! [0, 1]

[tx +y) + (1 # O(x# y)| < [x].

6. Let x ! R and consider the seA, = {n! N| n %x}.
(a) Prove that sup(Ay) is a Real number. This number is called thénteger part of
x and it is denoted by K].
(b) Prove now that [x]! Ay. To do so, follow the next step:

I. Prove that there isn! N such that [x] # % <n ' n%[x].
ii. Show that foranym! N, if n<m thenm "l A,.
iii. Prove that [x] is the maximum of A, and conclude.

9



The Real numbers Math 4031 - Spring 2016

7. Let us consider the seQ = {x! Q| x? < 2}. The aim of this problem is to show that
the supremum ofQ is not a Rational number, and so the Supremum axiom doesnOt hold
when replacingQ for R. We divide the proof in several steps:

(a) Prove that Q is nonempty and bounded above.
(b) Prove that sup(Q)? = 2. To do so, follow the next steps:

i. Assume that supQ)? < 2 and get a contradiction by proving that
III

12" sup@?

, .
(sup@Q) + @)° < 2, wherea=min 2' 2sup@Q) + 1

i. Suppose that supQ)2 > 2 and show thats = sup(Q) " S;ps(lﬁ)(g)z is also an

upper bound ofQ. Conclude that the only possible option is that supD)? = 2.

(c) Suppose that supQ) ! Q and let g be its lowest terms representation, that isp
and g are Natural numbers having no common factors.

i. Prove that p is even if and only ifp? is even.
Hint : Recall that pis even ifp =2 & for somen ! N. To prove the implication
(# =) use the contrapositive and the fact that a number that is not even, must
be odd, that is, it can be written as 2an + 1 for somen! N.

ii. Prove that p and g must be both even, and then conclude.
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Week 4: Sequences of Real numbers

We continue the study of the set of Real numbers by introducing the notion of sequence. From
now on, we assume that all the Real numbers axioms are well known and we use them without
making any reference, except in particular situations.

Before going further let us introduce some notation. IA is a Pnite set, whose elements are
a, ap, ..., a, we write maxa;, a, ..., &/} to indicate max(A). Moreover, for anyn! N,
the notation x" stands for the Real number debned recursively via

nl'14

"x!1 R, x°=1 and x":=x"'a, n! N\{O0}.

4.1 Sequences and converge
Let us begin the exposition with an example. We consider the set of Real numbers debned via
! " #

A= x! Ru#n! N\{O}, x =

b

We know that the order in which we write the elements oA is irrelevant for its description.
For instance,

! # ! #

1 1 1
A= 1, =, =, =, = = ... and A= -, 1 - =, =, -, ...
1 6 2 2’74

NI
Wl
NN
gl R
wl R
ol k-
gl R

are equivalent description oA. However, if we assign an order to each positionsAf and A,
say from left to right, and we associate each blank with a positive Natural number (1 for the
prst position, 2 for the second one, and so on). We get tha} and y,, the n" element ofA;
and A,, can be described via

1 1 nis odd
4.1) Xn= = = n1iso

L niseven

We write {x,},-; and {y,},-; to indicate the objects created from the seté; and A, with
the order we have prescribed. This kind of objects is what we callsequence, that is, a
(countable) inPnite set whose elements have an order associated with them.

Similarly as done above, we denote a generic sequence Xy}, -, , and we may use alsg,
or any other letter with the subscript n to indicate the n element of the sequence at hand.

1
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The main interest in studying sequences is their relation with the idea @jpproximation.
Intuitively, we see that the sequences given by4(1) get closer and closer to O as increases
its value, until the point that for any error ! ! (0,+" ) we may take, we can pick am ! N
large enough so thaix,| # !. This yields to the concept ofconvergence .

Depnition 4.1. We say that a sequencgx,};-; converges if there exists ! R such that
(4.2) $11@O+" ), N! N, $n! N, (N#n =& |x," L|#!).
Under these circumstances, we writg, ( L and L is called thelimit of {xp}/-; .

Example 4.1. Let us prove thatx, ( 0, where x, is given by (4.1). Since, we have a
candidate to limit that has been prescribed, we just need to verify thé#.2) is satisbed. Let
us exhibit one way to prove this:

1. We take any! ! (0,+" ), thatis, ! is a generic positive Real number.

2. We write the functional statementx, ' L|# ! as explicit as we can. In this case, since
Xn = 2 andL =0, we get} # !; here we have useff| = -.

3. We assume there existdl ! N such that (4.2) holds true and Pnd some condition over
it. In this case, it will be that 1 # N &!. Furthermore, note that by the Compatibility
axiom (C,), this condition is su cient to prove the convergence. Indeed, sinéé # n
and!! (0,+" ), we getN & # na!. Consequently, ifL# N & thenl1l# nal.

4. Find N ! N for which the condition found in the previous part is satisped. To do this, we
need to get the existence from another source; for instance any theorem that provides the
existence of some Real number. In this case, we use the Archimedean property (Theorem
3.2) with M =1 and x = . This theorem gives the existence dff ! N such that
1=M<N & = N &'. In particular, we also havel # N &, so the conclusion follows.

Notice that in Debnition 4.1, the Natural number N depends in general oni, as in the
preceding example. This means that, th&l associated with! = 1 may be di! erent from the
one associated witH = %; normally, the latter will be greater than the brst one.

Remark 4.1. The limit of a sequence is uniquely determined. To see this, assume by contra-
diction that there are two limits, sayL; andL,. SinceL;' L, ¥ 0, we have that%|L1' Lol is
a positive Real number, and so, it can be used hsn (4.2). Furthermore, given that{x,}: .,

converges, forl = Z|L;' Ly|, we can PndNy, N, ! N such that

$n! N, [(N;#n =& |x,' Lyf# 1) * (No#n =& |x,' Lo/ # ).
Let n! N be such thatN; # n and N, # n (for instance n = max{Ny, N,}). Hence,
La' Lol = 10" Xat e’ Lol# ILs' Xl + [o" Lol# 141 =21= 24l Ly
which yields to a contradiction. So, we must have; = L.

2
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4.1.1 Some conditions for convergence

Recall that sequences can also be seen as (inPnite) nonempty subsetR.oHence, we say
that a sequence x,};-, is bounded below if it is bounded below as a set. Since each of the
elements of the sequence can be enumerated, we write this debnition in the following way:

I'm" R, #n" N, m$ Xx,.
In an analogous way, we say thafx,}: ., is bounded above provided that
IM" R, #n" N, X, $ M.

We say that {x,}}-, is bounded if it is bounded below and above at the same time. We
can easily verify that the sequences given byt (l) are both bounded; it is enough to take
m =0 and M = 1. Moreover, by the Supremum axion, sud(X,},-; ) is well dePned whenever
{Xn},=; is bounded above. By using similar arguments, we also get that ifif,};-, ) is well
dePned whenevefx,}| ., is bounded below. Under theses circumstances, we might use the
following notation

sup{Xn} := SUp({Xn}!n:l) % inf{xn} = inf( {Xn}!nzl)
It turns out that any sequence that converges must be bounded.
Theorem 4.1. Suppose thaf{x,}}-, converges, the it is bounded.

Proof. By the debnition of convergence, we have that there is" R so that (4.1) holds true.
In particular, let N " N be the number associated with = 1. We then have that

#n" N, N$n, Xo| = [Xn &L+ L|$ |Xg&L|+|L|$ 1+]L]|.
This means that the tail of the sequences is bounded, that is,
#n" N, N$n, &Q@A+ L)) $ xn % xn $ 1+]|L]|.

On the other hand, the setf{x;, X», ..., Xy~ 1} IS @ Pnite, so it is bounded. Letn and M be
a lower and upper bound of this set. Then, the following is always true

#n " N, min({m,&@Q+ [LD}) $ xn % xn $ max({M, 1+ |L]|}.
Hence,{xn}}-; is bounded and the proof is complete. H

The preceding theorem provides a necessary condition for a sequence to converge. However,
this condition is not su cient. For example, the sequence whose terms are given by
|

1 ifniseven

Xn = .
&1 if nis odd
is bounded but it doesnOt converge. One way to make boundedness! ac&nt condition for
convergence is to ask some additional structure to the sequence.
Note that the sequence{x,};-; given by (4.1) has the special feature that each of its
elements is less than the preceding one. We call this propertyonotonicity

3
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DePnition 4.2. A sequence[x,} -, is calledmonotonic if one of the following holds true:
¥ {xn}i-; is adecreasing sequence, thatis, 'n" N, Xn«1 # X.
¥ {xp},-; is aincreasing sequence , thatis, 'n" N, X, # Xp+1.
We now provide a criterion to determine that a sequence converges based on monotonicity.

Theorem 4.2. Let {x,},-; be an increasing sequence bounded above, then it converges. Anal-
ogously, if{x,}}-; is a decreasing sequence bounded below, then it converges.

Proof. We only prove the case of increasing sequences, the other is similar and is left as exercise
for the reader. Sincgx,};-; is bounded above, by the Supremum axiont, := sup{x,} " R.

We claim that x, $ L. Take! " (0, + %) arbitrary, by the debnition of the supremum, there

isN " N such that

L&!# Xy.
By the monotonicity of the sequence and the Transitivity axiom, we get that
'n" N, (N#n = L&!# X,).

Furthermore, by debnition 0# L & X, = |[L & X,,| for any n" N. Hence, after a few algebraic
steps we get
'n" N, (N#n = |L&Xy|#!).

Therefore, sincd " (0, + %) is arbitrary, the conclusion follows. ]

Example 4.2. Let us consider the sequence given ky = ”Tl It is not di! cult to see that
{xn},-; is bounded above by 1; actuallgup{x,} = 1. We claim that it is also increasing.
Indeed, since(n & 1) &(n+1) = n?2& 1# n? we get that
n&l n2 _ n
n nan+1) n+1

Xn = = Xn+1.

Thus, by Theorem4.2 the sequence converges sop{x,} = 1.

The next result is a very useful tool to prove the convergence of a sequence and it is called
the Squeeze Theorem . This criterion doesnOt require a monotone character on the sequence
but that it belongs to an interval whose length is smaller and smaller as increases its value.

Theorem 4.3. Let {X,},-; and{yn},-; be two sequences. Suppose that$ L andy, $ L
for someL " R. Let {z,},-, be another sequence that satisPes

I'n" N, Xon# 2z, ( Zn # VYp.
Then {z,}}-; converges taL.

Proof. Let! " (0,+%) and Ni,N," N given by the depnition of convergence ¢f,};_-, and
{yn}, =1, respectively. LetN = max{Ny, N,} and take anyn " N such thatN # n, then using
the properties of the absolute value

Zo & L # Yo & L # [y & L|# ! (& ! #& |Xn & L|# Xn & L # 2, & L.

This means thatz, & L # ! and &! # z, & L, or in other words, |z, & L| # !. This completes
the proof. 0
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Example 4.3. We consider the sequence determined by
!

1 if nis even
Zn = n 1 . .
I~ if nis odd
It is not di! cult to see that, settingx, = ! % andy, = % the hypothesis of Theorerd.3 are

satispes withL = 0. Hence, we also have, " 0.

4.1.2 Algebraic combination of sequences

We Pnish this section by showing that algebraic combinations of convergent sequences also
converge and their limits can be obtained in terms of the initial sequences. This will help us
to study the convergence of complicated sequence in terms of simple ones.

Theorem 4.4. Let {x,};-; and{y,};-; be two sequence. Suppose that" x andy, " vy
for somex,y # R. Then

1. $c# R, the sequencd céx,} converges taoc ax.
2. the sequencg x, + y,} converges tox + vy.
3. the sequencé x,, ay,} converges tax ay.

4. if x %0, then % "L

X

Proof. Let ! # (0,+ & ) be bxed but arbitrary.

1. We can rule out the casec = 0, because the sequence debned by = 0 converges to
0. Let N # N be given by the depPnition of convergence ¢k,};_, but associated with
k= ﬁ a, thatis,

1
$n#N, N'" n = |x,! x| Hé!.

By the properties of the absolute value we have that for ang # N with N ' n the
following holds true:

] ) ) 1,
lcax,! cax|" |cJakn! X|' |ca— & ="!.

|l

This means thatcax, " cax.

2. Let N;,N, # N given by the dePnition of convergence dfx,}; -, and {y,}}-,, respec-
tively, but associated with I+= 3 a!. We setN = max{Ngi, Ny}, and in particular we
have " #

1 1
$n#N, N'" n = [|xp! x|' Eé!) lyn ! y|" éé!
It follows that for any n # N with N ' n:
1, 1,
|(Xn + yn) b X+ W) IXn ! X[+ |yn !yl éa!+§a!:!_

We conclude then thatx, + y, " X+ V.
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3. Since{x,};-; converges, itis bounded. In particular, its absolute value is bounded above
by somec! (0,+" ) (itis always bounded below by 0). Moreover, we can always assume
that |y| # c, becausec is only an upper bound and any number greater thanis also an
upper bound for{| x,|}}-; .

Using the same argument as above, we take;,N, ! N given by the debnition of
convergence ofx,};-; and{y,}}-;, respectively, but associated witH = % al and we
also setN = max{Ny, N,}. We take anyn! N with N # n and obtain that

Xn@nSXY| = [Xn@n S Xn &+ Xn &S XY| # [Xn|ahnS Y|+ |ylakn$ x| # capn$ y|+ caka$ X|.

On the other hand, since then termgx, $ x| and |y, $ y| are both bounded above by
%|c| al, we pnally obtain that x, ay, % x ay, because

) , 1, 1,
|Xn ayn $ X &y| # éa!+§a! =1,

4. Let N;,N, ! N be given by the dePnition of convergence ¢k,};-, but associated with
k= 14ak|and k= 14ak|?4& . Therefore,

1

(4.3) & ! N, Ny #n = |[xp$ x| # éa}q
1

(4.4) &n! N, No#n =" [, $ x| # éé}qzé!

Let N = max{N, N,}. Note that (4.3) and (4.4) hold as well if we replaceN; and N,
with N, respectively.

On the one hand, from 4.3) we get for anyn! N with N # n that
1,
|X| # |X$ Xn + an # |X$ an + |Xn| # éakl + |Xn|-

This means that% ak| # |xp] for n ! N appropriate. In particular, 0 < |x,| and

oy # 2485 foralln! N that satispesN # n.

On the other hand, using é.4) and the remark we did above, we can conclude, because

| |
ll 1|
&! N, N#n = {_$;;=

Xn

1 .1
a X|# 24— 4= 4k|& = !.

Xn| @ Kl

4.2 Completeness
We turn our attention into an important convergence criterion calleccompleteness . This is a

very powerful tool that allows us to determine whether a sequence has a limit by only studying
the distances between its terms. To be more accurate, we introduce the following depPnition.

6
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DePnition 4.3. We say that{x,};-;, is a Cauchy sequence if for any ! ! (0,+" ) the
following condition is met

(4.5) #NT N, $n,p! N, (N %n =& |Xy' Xpsp| %!).
Example 4.4. Let us consider the sequence given by

IR S R | 1
Xn = F'_l+2+§+"'+ﬁ'

This sequence is a Cauchy sequence. Indeed, sikc¢e 1 %k for any k! N, we get

n+p n+p n+p
XI’1+|: i% ;: i
P k2 k(k' 1) k™ 1
k=n+1 k=n+1

k=n+1

1, 1
n

% .
n+p n

x ==
n k -
Hence, given! ! (0,+" ) we know by the Archimedean property that there ¢ ! N such that
1%! aN, and so, (4.5 holds too with theN we have chosen above.

It turns out, as we will prove shortly, that a sequence converges if and only if it is a Cauchy
sequences. In this case, we say thRt is a complete space . This claim shows the utility of
the notion of completeness. This criterion doesnOt require a priori knowledge about the limit;
it can be proven (by more sophisticated means) that the sequence in Examglé converges
to %a 2 which is not obvious from the depPnition of the sequences. Moreover, it is not diult
to see that the sequence in Examplé.4 is also increasing. However, it is not straightforward
to prove that it is bounded above, which may turn Theorend.2 di! cult to apply.

Theorem 4.5. Let {x,};-; be a sequence of Real numbers, thx,}._, converges if and only
if it is a Cauchy sequence.

Proof. The proof consists in two parts. We brst prove that if a sequence converges, then it
must also be of Cauchy type. Let ! (0,+" ) be bxed but arbitrary. By the debnition of
convergence, there idl ! N such that

" #

|

(4.6) $n!' N, N %n =& |X,' L|%'§
Letn! N suchthatN %n. Itis clearthat N %n+ pforany p! N. In particular, by (4.6),
we have that, ifn,p! N are as above, we get

! , !
|Xn' Ll%i ( |Xn+p Ll%é.
Combining these two inequalities we get
| |
IXn' Xnspl = [Xn" L+ L" Xnepl %Xn" LI+ L' Xnspl %'§+ 'E: I

In other words, {x,} -, is @ Cauchy sequence and the brst part of the proof is complete.

Let us now assume that{x,};-; is a Cauchy sequence and prove that it converges. This
part is considerably more di cult and for this reason we divide it into two steps: we brst
construct a candidate to limit (as the supremum of a particular set) and then we prove that
it is actually the limit of the sequence.
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' 1
"np! N, Ni#n =% |xn%xn+p|#§

1. By the debnition of Cauchy sequence, we have that thereNs ! N such that
l 1

In a similar way, there isN, ! N such that
l n
' 1
"np! N, No#n =$ [|Xp%Xnsp| # 2

Note that we can also assume thalN; # N, and the preceding statement is still valid.

Hence, continuing the process we see that for aky! N\{ 0,1} we can PndNx ! N such

that Ny 1 # N and
I [1]

' 1
nn’p! N, Nk# n :$ |Xn %Xn+p|# ?
Let us now consider the se#',[e $

1

A= x! RV| &! N, X = Xy %o

This set is nonempty. Furthermore, itis bounded above. Indeed, Igt! A. By dePnition,
there isk ! N so that x = xy, %Elr. In particular,

1
X # XN, = XN YOXN, + XNy # XN, YOXN, |+ XNy # > + Xnj,-

So,M = %+ Xn, IS an upper bound ofA. Thus, by the Supremum axiom, supf) ! R.

Note that if {x,},-; were convergent, then eacRy, %ilr should approach to the supre-
mum. Consequently, we takd. = sup(A) as our candidate to limit.

2. Given that L = sup(A), there isx ! A such that L %’§ # X. In other words, there is

k I N such that |

1 !
and L # xNk%§+ 3

Note that there are inbnitely manyk ! N that veribes the preceding condition; otherwise,
L wouldnOt be the supremum. The latter means that we can takd N as large as we
want. In particular, we can assume that 3t 2<& . Therefore, we get that for anyn ! N,

if N # n then

X = XNK%?

1
|Xn %L| = [X, %X+ X%L|# |Xn %X|+ |[X%L|# X, YoXn, |+ x + [x %L].
On the other hand, we have thaix %L| = L %x # % and by debnition|x, %X, | # .
So bnally, since 3 2 a! we get
1 !

1
|xn %L| # ?+ §+§ I,

which completes the proof.
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4.3 Exercises
1. Leta! ['"1,1] and consider the sequendex,};,-; dePned via
Xn =3 é—z.
Prove using the dePnition of convergence that, # O.

2. Let {x,},-; and{y,};-; be two sequences. Suppose tha # x andy, # y for some
X,y ! R. Prove that if x, $ y, for all n! N, then x $ y. Based on this, determine
whether the limit of a sequence of positive numbers can be a negative number or not.

Hint: Assume thaty < x and use! = x" y to get a contradiction.

3. Let {xn};,-; be an increasing sequence af{g,};-, be a decreasing sequence such that
Xn" Yn# 0. Show that{x,},-, and{y,}}-; converge and have the same limit.

4. Let {xn};,-; be the sequence debned via
!

+ x2
X1:1, Xn+1 = 92)(n,n| N\{O}

%_ . " :
Here ~ a stands for the unique positive Real numbex that veripesa = x2.

(@) Show that {x,};-; is bounded above by 3.
(b) Show that{x,},-; is increasing and converges to 3.

5. Let {x,};-; be a Cauchy sequence. Consider another sequefigg -, such that
1
&n'! N\{ 0},|Xn" ynl$ ﬁ-

(@) Prove that {y,}}-, is also a Cauchy sequence.
(b) Prove that {x,};-, converges toL ! R if and only if {y,}!_, convergestoL ! R.

6. Let {xn};-; and{y,}}-; be two sequence that satisfy

¥ {yn}}-, is decreasing withy, # 0 and eachy, being positive.

Iln
¥ The sequencd z,} .-, , is bounded, wherez, := Xk.
k=1
Iln
Show that the sequencéwn}’n=1 converges, wherev, = Xk Yk -
k=1
Hint:  Prove that {Wn}L:l is a Cauchy sequence. To do so, show that for anyp! N

we have
nwp" 1

Wn = Yn+pZn+p T (V" Yi+1)Zk " Yn+1Zn
k=n+1

Wn+p
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Week 5: Subsequences and Compactness

We turn our attention into a new mathematical concept called compactness, and we exhibit
its relation with sequences of Real numbers. To do this, we need to introduce a new object
called a subsequence.

5.1 Subsequences

Let us consider the sequence

| 1 1
{Xn}n=y o= = 1 > 3

ol e

1
' 2

Note that we can construct another sequence frofx,}, -, by, for example, taking only the
terms associated with an even number
! n

1

W her = - 111!
Wher = 28 .~ 274 6

In this case, we have used the rule = 2 &k to construct the new sequencéyy},-,, but we
could have used any other, as for intance, = 2 &k + 1. Sequences constructed in this way are
called subsequences of {xp};,-; .

Depnition 5.1. Let {x,},-; be a given sequence, we say th@i},-, is a subsequence of
{xn};=, if there is a strictly increasing sequence of positive Natural numbefsy};,, that is,
N <N+ forany k! N\{ 0}, such that

(5.1) "k! N\{ O}, v«k= Xp,.-
We simply write {x,, } -, to denote such subsequence.

Remark 5.1. Note that in the preceding dePnition, sincgny}i-, is an strictly increasing
sequence of positive Natural numbers we must have

"K1 N\{O}, K# n.

Since a subsequence is essentially a sequence, we can talk about its convergence. In par-
ticular, we say that a subsequence converges to some lihit R provided that

(5.2) 11 (0,+%), W I N, "k! N, (N#K =& |Xn, ' L|#!).



Sequences of Real numbers Math 4031 - Spring 2016

Note that (5.2) agrees with the usual dePnition of convergence but applied to the sequence
{y«}i=, that veribes 6.1). Moreover, the collection of all the limits of subsequences pf,};,-;
are called theaccumulation points  of {xp};-; .

Example 5.1. Let us consider the sequence given ky = (! 1)". We have already discussed
that this sequence doesnOt converge. However, it is nbtatilt to see that it has several sub-
sequences that converge. For example, the subsequences given by the nde2 ak and
n=24ak+1. In the brst case we get the sequence whose elements are all identically 1 and
in the other case, the sequence with all the elements beiny It is clear that both sequences
converge, tol and! 1, respectively. Hencel and! 1 are accumulation points of{ (! 1)"}!_, .

It can be proved that they are the only accumulation points ¢! 1)"}}.,. We leave this as
exercise for the reader.

For the purposes of the course, the utility of the notion of subsequence is twofold. We
describe them in the next subsections.

5.1.1 Convergence

Let us start with a question. Suppose that a sequence converges, what happens with any of
its subsequences? Does it converge too?

It turns out that subsequences can be thought as particular selections of terms of the
original sequences. Therefore, it may seem natural that if a sequence converges, then any
subsequence must also approach to the limit.

Theorem 5.1. Let {x,},-; be a given sequence. Suppose that" L, then any subsequence
{Xn }i=1 cOnverges ta.

Proof. Note that by debnition we have
(5.3) #$(0,+%),8 $N, #n1$N, (N' n =( |x,! L' ).

On the other hand, by Remark5.1, we also havek ' ny for any positive Natural number.
Therefore, ifN ' k for someN $ N, then N ' ny, which means that if 6.3) is true, then so
must be (5.2). Consequently, any subsequence f%,};-, must converges td_ as well. ]

In practice, the theorem is usually used in the contrapositive form, that is, if you Pnd two
subsequences that converge toldérent limits or a subsequence that diverges, then you can be
sure that the sequence you have been provided at the beginning doesnOt converge.

Remark 5.2. A direct consequence of Theorem.1 is that a sequence that converges must
have a unique accumulation point. The converse of thi$ amation doesnOt hold in general,
that is, a sequence that diverges can have a unique accumulation point. For example, let us
consider the sequence determined by
!
1 if nis odd,

n if nis even.

It is clear that the unique accumulation point of this sequence 1s however the sequence is not
bounded, so it can not converge.
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5.1.2 Sequentially compactness

Remark 5.2 shows that there can be sequences having unique accumulation points that donOt
converge. To avoid this pathological cases we need to rule out the cases of unbounded se-
guences. For this purpose, we turn our attention into the relation between bounded se-
guence and subsequences. The most important result concerning this is called Bodézano-
Weierstrass Theorem

Theorem 5.2. Let {x,},-, be a given sequence. Suppofe,};-, is bounded, then it has
a subsequence that converges. In other words, the set of accumulation points of a bounded
sequence is nonempty.

Proof. Let {x,};-; be a bounded sequence. We are going to construct a subsequence that is
also a Cauchy sequence, and the result will follow from the completenes$Rof
Let a,b! R be a lower and upper bound ofx,},-,, respectively. Let us consider the

intervals I b" I o "
a+ a+

A]_,]_ = a, T and A1,2 =

Since the sequenc{axn}:1=1 has inbnitely many elements, eitheA;; or A; , contains inPnitely

many elements of x,}1-; (not necessarily all the elements of the sequence). We set

a+b
2 b

A = 4, bz = and A]_ = A]_’]_

if Ay, contains inPnitely many elements of the sequence, otherwise we set

a_a+b
2 — 21

bz = b, and A= A1’2.

We taken; :=min{n! N\{0}| x,! Ai}. Noticethat1" nj.
We repeat the process but witha, and by, instead ofa and b. Hence, consider the intervals
! n I n

apt+ b .az"'bzbz_

A2,1: ayp, 5 and A2,2: >

By the same arguments used above, eithdy,; or A,, contains inPnitely many elements of
{Xn}h=1 . We set
at+ by

az= a;, b= > and Az = Ay

if Ay contains inbPnitely many elements of the sequence, otherwise we set

a +
a5 = 22bz’

b3 = bz, and Az = Az,z.

Then we taken, :=min{n! N\{O0}| ny<n # X,! A}. Note that, sinceA, $ A; we have
that Xn,,Xn, ! A; and so

. b%a
|Xn, %0Xn,| 5

3
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Using a recursive argument we can construct a strictly increasing sequence of positive Natural
numbers{ny} .-, for which we have

, bl a
2k

IXn ! X,y |

We claim that {x,, }-, is a Cauchy sequence. Indeed, for ahyp # N\{ 0} we get

p'1l

ket I(-ﬂ)"lb' a b! a- 1
|Xnk ! Xnk+ | ! |Xni ! Xni+1 | ! — = _ K —.
' i=k i=k 2 2 i=0 2
Note that "' 2" 2 so we get that
b! a
$k,p# NV{ O}, [Xn, ! Xny,,|" T

Hence, given! # (0,+%), by the Archimedean property ofR, we can PndN # N such that
J2 " 1. Therefore, since for ank # N\{ 0} such thatN " k we have 2" " 2<'1 (because
1" 2), we get that for anyk,p# N\{ 0} we have

bl a_ bl a

[Xn, ! X”k+p|" k"1 ON"1

Therefore{x,, },-; is a Cauchy sequence, and by the completenessRoit also converges. So,
the conclusion follows. O

In view of the preceding theorem and Exercise 4.2 (Week 4 notes), we have that any interval
of the form [a, j with a,b# R and a < b satisbes the following property:

Any sequence contained itfia, j has a subsequence that converges to sdm# [a, 4.

This property is known assequential compactness and it can be debned for general sets in
the following way.

Debnition 5.2. Let A & R be a given set. We say tha is sequentially compact provided
that any sequencéx,};-; contained in A has a subsequence that converges to sdm# A. In
other words, ifx, # A for any n # N, then there areL # A and {x,, },-; such thatx,, ' L.

We will study a useful characterization of sequentially compact sets in Exercide

The last result we present is in direct correlation with Remarls.2. We postpone the proof
of the theorem to the Exercises section.

Theorem 5.3. Let {x,}}-; be a given sequence. Suppdse,};-; is bounded and has a unique
accumulation point,L # R, thenx, ' L.



Math 4031 - Spring 2016 Sequences of Real numbers

5.2 EXxercises

1. Find all the accumulations points of the sequence given by
I n
C
Xp = (! 1)" &sin nél'z1

2. Let {x,},-; be a Cauchy sequence. Suppose th@t,}; -, has a subsequence that con-
verge toL " R. Prove that x, # L.

3. Let {x,}}-; be a given sequence. Suppose th@t,}} -, is monotonic and has a unique
accumulation pointL " R. Show thatx, # L.

4. We say that a setA $ R is closed if the limit of any convergent sequence contained in
A belongs toA, that is,

(%" N, xp" A) &x,# L = L"A

The aim of this exercise is to prove that a set is sequentially compact if and only if it is
bounded and closed. We divide the proof in several steps:

(a) Suppose thatA is bounded and closed. Show thaA is sequentially compact.

(b) Suppose thatA is sequentially compact. Show tha# is closed.

(c) Suppose thatA is sequentially compact. Show tha# is bounded.

Hint: Note that if the set A is unbounded, then there is a sequence contained in
A such thatn ( x, foranyn" N\{ 0}.

5. The goal of this problem is to provide a proof of Theorerb.3. The idea is to argue by
contradiction in the following way.

(@) Suppose{x,}} ., doesnOt converge to and show that there are" " (0,+) ) and a
sequencgyy }-; such that

N "N, ("<|[yn! Ll &*n" N, yn = Xn).

(b) Show that no subsequence dfyy }i-; can converge td..

(c) Prove that {yy}\-; has a subsequence that converges.

(d) Prove that any subsequence dfyy }y-; is a subsequence dfx,};-; .
(e) Find a contradiction and conclude the result.

6. Let {a,};-; be an increasing sequence ar{d,},-, be decreasing sequence. Suppose
that for any n " N\{ 0} we havea, <b,.

#
(a) Show that | _, [a,, ] is nonempty.
Hint: Construct a sequencéx,},-, with the property that x, " [a., k] for any
n" N. To conclude, recall that each intervald,, ly,] is sequentially compact.

(b) Suppose thata,! b, # 0. Prove that !n:1 [an, h] = {x} for somex " R.
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Week 6: Cardinality of some subsets of R

We Pnish the study of Real numbers with the notion of Cardinality. We now present a formal
exposition of the ideas we have described in the short overview of Set Theory. For this purpose,
we might need to remember some notions of functions.

Recall that a functionf : A! B is arule that associates ang " A with a unique element
in B, usually denoted byf (a). Furthermore, we say thatf : A! B is bijective if for any
b" B there is a uniquea " A such thatf(a) = b. In practice, we divide the dePnition of a
bijection in two part, the injective and surjective properties:

¥f :A! B isinjective provided thatf (a;) = f(a)) =# a; = a,.
¥f :A!l B is surjective provided that for anyb" B there isa™ A such thatf (a) = h.

For any bijective functionf : A! B, there is a unique function,g: B ! A such that
$a" A, g% (a)=g(f(a)=a & $b" B, f %g(b = f(g(b) = b.

The functiong: B ! A is called theinverse function of f, and it is denoted byf ' 1.

6.1 Cardinality of a set

Recall that we have said that a sefA is Pnite if there isn " N such that A has exactlyn
(di! erent) elements. The numben was called thecardinality of A and was denoted byA|.
In particular, this means that any Pnite set that hasn elements has the same cardinality than
the set

A, ={1 2, ..., n}.

If we look this from another point of view, we can also remark that a bnite sét hasn elements
if and only if there is a one-to-one relation betweeA and the setA,, dePned above. This
one-to-one relation is the process of counting.

This idea yields to the following debnition which applies to inbnite sets too.

Debnition 6.1. Let A,B be two given sets, we say thét and B have the same cardinality if
there is a bijective functionf : A! B. Under these circumstances, we just writfA| = [B].

Let us come back to the case of Pnite sets. Our intuition says that we can assign an order
to the elements ofA, say a;, a, ..., a,. Considering this order, we debne the function
f:A!l A, via

f (&) = k.

1
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Let us check that |A| = |A,| according to Debnition6.1L On the one hand we see that
f Al A, isinjective, because the counting process has assigned a unique element td‘the
position. On the other hand,f : A! A, is surjective, because any of tha possible positions
in the order has been Plled with an element .

6.2 Countable sets

We now introduce a formal debnition of aountably inPnite  set.

Debnition 6.2. Let A be a given set, we say tha& is countably inbnite if|[A| = |N|, that is,
there is a bijection betwee and N. In this case, we also writd A| = " .

Remark 6.1. Note that according to DebPnition6.2, any sequence is a countably inPnite set.
To see this, it is enough to use the functiof : {x,};-; ! N debned via

f(xn)= n# 1.

Clearly, this function is a bijection betweer{x,};-; and N. Moreover, the converse is also
true, that is, any countably inbnite set can be described as a sequences. To see this, suppose
thatf : A! N is a bijection, then it is enough to debne

Xn =T Y(n#1).

We are now in position to prove thatZ is countably inPnite, that is, it has the same
cardinality than N.

Theorem 6.1. The set of IntegersZ is countably inPnite.
Proof. Let us consider the functionf :|Z I N debned via

24z if0$ z,

fz)= _ . .
2Q4#2)# 1 ifz<O.

Let us divide the proof into three steps:

1. We brst need to check thaf : Z! N is well-debned, that isf (z) %N for any z % Z.
Let z %Z and suppose that 0% z, then by debnitionz %N and sof (z) = 2 4z %N.
Assume now thatz < 0, then by debnition# z %N and 1$ # z. This means that 25# z)
is a Natural number greater than or equal to 2, and sb(z) =2 a(#z) # 1 is a Natural
number greater than or equal to 1. Hence, the function is well-debned.

2. We now show thatf : Z! Nisinjective. From the preceding part, we have that if & z,
then f (z) is even, and ifz < 0, thenf (z) is odd. Hence, since any Natural number is
either even or odd, iff (z;) = f (z,) we get that z; = z,, and sof : Z! N is injective.

3. We pbnally prove thatf : Z ! N is surjective. Letn %N and suppose thatn is even,
that is, there is k %N such that n = 2 ak. But, since N & Z we have thatf (k) = n. In
on the other hand,n is odd, there isk %N \{ 0} such thatn = 2 ak # 1, which means
that n =2 &k # 1 = f (#k). Since,#k %Z we get thatf : Z! N is surjective, and this
completes the proof.

]
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6.2.1 The Cantor-Schreeder-Bernstein Theorem and consequences

When two setsA and B are given, it may be too dibcult to construct a bijection between both
sets to prove that they have the same cardinality. Instead, it may be easier to contruct two
injections, one fromA into B and another fromB into A. It turns out that there is a powerful
result, called the Cantor-Schreeder-Bernstein Theorem | that says that both strategies

are equivalent. We state the theorem, however we donOt provide a proof; we refer the interested
reader to [L, Theorem 3.1] for detalils.

Theorem 6.2. Let A and B be two given sets. Suppose that there are two function;A! B
andg: B! A, both injective. Then, there is a bijective functiorh: A! B.

We have claimed that the set of Rational numbers is countably inPnite. Nevertheless, it
proof is slightly more complicated than forZ and it requires some intermediate results.

We introduce the Cartesian productN" N as the collection all elements that can we written
as{{m},{m,n}} for somen,m # N. Formally speakingN" N is a subset ofP(N), so it is
a set in the sense we have debned at the beginning of the course. For sake of notation, we
denote an element oN" N by (m,n).

Lemma 6.1. The setN" N is countably inPnite.

Proof. By the Cantor-Schreeder-Bernstein Theorem (Theorer®.2), we only need to exhibit
the existence of an injective functiorf : N" N ! N, because it is clear that the function
g:N! N" N debned viag(n) = ( n,n) is an injection.

Let us consider the functionf : N" N! N debned via

f(mn)=2".(2-n+1) $ 1L

It is clear that f (m,n) # N, so we need to prove that it is injective. Take two elements in
N" N, say (my,n;) and (my, n,), such that (my, ny) %( my,, ny), that is,

m;%m, & n;%n,.
Suppose by contradiction thatf (mq, n;) = f (my, ny), then
(6.1) 2™ . (2-np+1)=2"2.(2-ny+1).

Suppose thatm; = m,, then by (6.1) we get 2-.n; +1 =2 -n,+1 and son; = n,, which leads
to a contradiction. Assume now thatm; % m,. Without loss of generality, we can suppose
that m; <m,. But, by (6.1) we get

2.n+1=2M"M . (2.n,+1),

which is impossible because the left handside is odd but the right handside is even because
2m2! M1 js a multiple of 2. This case also leads to a contradiction, $amy, n;) = f (My, ny)
can not be true, andf : N" N! N must be injective, which Pnishes the proof. ]

Remark 6.2. Lemma6.1 can be proved without using the Cantor-Schreeder-Bernstein The-
orem. It can be proved directly that the functiorf : N" N ! N given in the proof is also
bijective. We leave this as exercise for the reader.

3
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We are now in position to prove that the set of Rational numbers is countable.
Theorem 6.3. The set of Rational numbers) is countably inPnite.

Proof. Assume that any Rational number can be written a% wherep! Zandq! N\{ O}.
Then we consider the functiorf : Q" N# N debned via
T ;
;P _ (239 if0$ p,

q (24(%p) %1,q9 if p<O.

Itisclearthat f : Q" N# N is a well-debPned function, which in addition is injective. To
conclude the proof, we need to show that there is an injection frodM # N into Q, then by
Theorem 6.2 and Lemma6.1 the result will follow.

On the one hand, by Lemm&b.1, there is a bijection betweerN # N and N. On the other
hand, there is a canonical injection fromN into Q, that is, n &" n. Then, composing both
functions we obtain an injection fromN# N into Q. Then, in the light of the Cantor-Schreeder-
Bernstein Theorem (Theoren6.2), we get that there is a bijection betweerN# N and Q, and
so0Q must be countably inPnite because by Lemm@a.1, N# N is countably inPnite.

O

6.3 Uncountable sets

We say that a set isuncountable if it is inPnite and not countably inPnite. This yields to
the idea that every uncountable set has, in some sense, more elements tNatRecall that
we have said that two sets have the same cardinality if there is a bijection between them.
Consequently, if two sets have dlierent cardinality, no injection from one of the set in the
other can be surjective.

Debnition 6.3. Let A,B be two given sets, we say that the cardinality &f is less than the
cardinality of B if there is an injective functionf : A" B, but there is no bijection between
A and B. Under these circumstances, we just writfA| < |B|.

We now evoke the fact that if A is a Pnite set, then|P(A)| = 2/Al, which means that
|A| < |P(A)|. This fact can be generalized to inbnite set and it is known as th@antorOs
Theorem . This results reads as follows.

Theorem 6.4. Let A be a given, thenA| < |P(A)]. In particular, P(N) doesnOt have the
same cardinality thanN and it is an uncountable set.

Proof. Letf : A" P(A) debned via

f(x) = {x}.

Itis clear that f : A" P(A) is injective. So to conclude we need to show that there is no
bijection betweenA and P (A). Suppose by contradiction that there igg: A" P(A) bijective.
Let us debne

B={x!A| xt gXx)}.

4
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It is clear that B is a subset ofA. Moreover, sinceg: A! P(A) is surjective, there isb" A
such that g(b) = B. We now have two possibilities folb, eitherb” B or b'/ B.

On the one hand, ifb" B, then b '/ g(b), but g(b) = B, sob ' B, which leads to a
contradiction. On the other hand, ifb'/ B, we get that b '/ g(b), which means thatb" B
and we get a contradiction too. Therefore, such functiog: A! P(A) can not exist and the
conclusion follows. m

6.3.1 Cardinality of the set of Real numbers

The set of Real numbers is one of the most important examples of uncountable sets. There
are several ways to prove that this set in uncountable, but the one we present is based on the
CantorOs Theorem.

We begin by noting that R has the same cardinality than the interval (01); too see this,
it is enough to consider the bijectiorf : R! (0,1) debned via

_ _ exp(x)
F)= exp(x)+1°

So, the fact that |R| = |P(N)| will be a direct consequence of the following result.
Theorem 6.5. P(N) has the same cardinality than the interval0, 1).

Proof. Let us construct two injections, one fromP (N) into (0, 1) and another from (Q 1) into
P(N) . Then the conclusion will follow from the Cantor-Schreeder-Bernstein Theorem.

1. Recall that each Real numbex " (0, 1) has a unique decimal representation
X =0.n1NyN3Ny4...

where eacy " {0, 1, ..., 8, 9} and there is no repeating sequences dé @t the end.
We debnef :(0,1)! P(N) via

;
f(x =0.n1NN3N4...) = {N; 410, n, 4107, nz 410, ..} =  {nc &l0}.
k=1

It is easy to see thatf : (0,1) ! P(N) is well-dePned, so we need to prove that it is
injective. Let x = 0.nynyn3n,4... andy = 0.mymomsmy. .., both di! erent elements of
(0,1). Let k " N be the brst index such thatn, # my. This index exists, otherwise
X = y. In particular, n &0 7 f (y), sof (x) # f (y), which means thatf : (0,1)! P(N)
IS injective.

2. Let us now construct an injection fromP(N) into (0,1). Let A $ N, we consider the
sequence given by "
A 1 ifn%1" A,
0 otherwise

5
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We consider the functiong: P(N) ! (0,1) debned by

!!

g(A) =0.1x{x5x5 ...=0.1+  xha10 (™,

n=1
We readily see thatg : P(N) ! (0,1) is well-debned. Furthermore, it is also injective.
Indeed, letA,B " P(N) with A # B. Suppose that there ip" A\ B. In particular,
xf.. =1and xp,; =0, sog(A) # g(B), because each element in (@) admits a unique
decimal representation. Thereforeg : P(N) ! (0,1) is injective and by the Cantor-
Schreeder-Bernstein Theorem the conclusion follows.

]

6.4 EXxercises

1. Prove that the set of even and odd Natural numbers are countably inPnite.

2. Leta,b" Rwith a <b. Prove that the intervals [0, 1] and g, j have the same cardinality.
3.
4

. Prove that if A and B are countable sets, therA $ B is countably inbnite. Can the set

Prove that the intervals [0, 1], [0, 1), (O, 1] and (0 1) have the same cardinality.

of Irrational numbers be countably inPnite?

The aim of this problem is to prove that, if X is a countably inPnite set andA % X is
inPnite, then A is countably inPnite. To do so, follow the next steps:

(&) Show that it is enough to prove the result for the particular cas&X = N.
(b) Show that any nonempty subseB of N has a unique minimum.
(c) Consider the functionf : N! A debned recursively via
f(0)=min(A) and f(n+1)=min( A\{f(0), ..., f(n)}).
Show that the function is well-debned (the minimum are attained) and that
& " N, f(n)<f(n+1) ' n( f(n).
(d) Prove by contraposition thatf : N! A is injective.

(e) Prove by contradiction thatf : N! A is surjective.
Hint: Suppose prst thata <f (n) for somen " N and consider the set

B={n" N[ a<f(n)}.

Show that f (ng) ( afor ng := min(B) and get a contradiction. Finally, study the
case in whichf (n) <a for any n" N.
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Week 7: Continuous Real-valued functions:
Sequential debnition

We now begin the study of continuous Real-valued function. We might focus, unless otherwise
stated, on the case of functions dePned on a bounded closed interval and whose values belong
to R. These functions will be generically denoted bl : [a,J ! R. Furthermore, if the label
of the function is of little importance, we might also use the notatiorx "! f (x) to highlight
the expression that debnes the function.

Let us emphasize that several of the results discussed in the brst part of the course will be
applied, in particular those for sequence of Real numbers.

7.1 Limit of functions

The essential notion required to study the continuity of a function is thdéimit of a function
at some point on §, .

Debnition 7.1. Letf :[a,fd! R be a given function. We say that # R is the limit of f
at w# [a, 4 if for any sequencgx,};-; contained in [a, i that converges tag, we have that
f(xp)! L. We denote the limit off at w by

fim 1 ().

Let us consider the functionf (x) = x™ debPned on any interval of the formd, j, where
m # N. We claim that lim,- 4f (X) exists and equald (®), regardless the values o, b or m.
To see this, we use an inductive argument:

¥ case m = 0: Under these circumstancesf (x) = 1 for any x # [a, and so clearly,
limy- f (X) = 1 for each »# [a,d. Indeed, for any sequence that converges xo#ga, b
we must havef (x,) = 1, which means thatf (x,) ! 1.

¥ casem =$ m+1: We assume that the limit ofx "! x™ at w # [a,l is ¥". By the
algebraic properties of the limit we know that ifx, ! wandy,! vy, thenx,ay,! w&.
Let us takey, = x;' andy = &™, which is a suitable choice by the induction hypothesis.
Hencex™*! = x, &M | wae™ = x™*1, Therefore, the limit of the mappingx " xm*?
at wis @", and the conclusion follows by the induction principle.

1
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7.2 Continuous function

|
Suppose now that we want to compute the value of 2)™ for somem " N. We may agree
that, in practical terms, this value cannot be computed in an exact way although it can be
approximated. One way to do it, is to use the argumepts exhibited above. We know that
for any sequence x,} - 11we may take that converges to 2, we will get that x7' can be as
close as we desire from (2)™. If we now want to computef ( 2) for another function, it
would be very useful to have a similar property as above, that is, that the valifg 2) can be
approximated by a sequence of terms of the forfri(x,), wherex, # = 2. When this happens
we say thatf is continuous atxe= 2. In general terms we have the following dePnition.

Debnition 7.2. Letf : [a,d # R be a given function. We say that is continuous at
w" [a, B if the limit of f at w exists and

lim £ (x) = f ().

We say thatf is continuous, if it is continuous on each point on its domaira, .

In the light of the discussion above, we have that the magp $# x™ is continuous on any
interval [a,d and for anym " N. It is also, easy to see thak $#|x| is continuous.

Continuity is a property that can be conserved under several operations. The following
result is a direct consequence of Theorem 4.4 about algebraic combinations of sequences. We
leave the details of the proof as exercise for the reader.

Theorem 7.1. Letf :[a,f# Randg:[a,j# R be two given functions. Suppose thét
and g are continuous atw" [a,. Thenf + g andf &g are continuous atw. Furthermore, if
g(w) %0, then f/g is also continuous ate.

Likewise, continuity is preserved under the composition of functions.

Theorem 7.2. Letf :[a,d# Randg:[c,d# R be two given functions. Suppose that
f(x)" [c,d for any x " [a,d. If f is continuous atw " [a,l and g is continuous atf (®),
theng&f :[a,f# R is continuous atw.

Proof. Let {x,},-; be a sequence contained i that converges toxa Sincef is continuous
at w, we get thaty, = f(x,) # f (®). Now, sincef (x) " [c,d] for any x " [a,J we have that
{yn}}=; is a sequence contained irc[d] that converges tof (®) " [c,d. Therefore, sinceg is
continuous atf (®), we get that

g&f (xn) = 9(f (Xn)) = 9(yn) # o(f (®)) = g&f ().
O

Remark 7.1. Given two continuous functionsf : [a,d # R andg: [a,fd # R, the maps

x $# max{f (x),g(x)} and x $# min{f (x),g(x)} are also continuous ona, . Indeed, this is

a consequence of Theorem.1 and Theorem?7.2. To see this, it is enough to check that both
maps can be written as the sum and composition of continuous functions in the following way

max{f (x),g(x)} = %(f (x)+ g(x)+ [f(x)" a(x)]),
min{f (x),g(x)} = %(f )+ 90) " 1F(x)" gl

2
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7.3 The range of a continuous function

We discuss now about the shape of the range of a continuous function. We recall that the
range of a functionf : [a,j! R is the set debned by

f(a,8):={y" R| #" [a,b, y=T(x)}.

Our goal now is to show that is a bounded closed interval. This result will be a consequence
of two important theorems for continuous functions, namely, the Intermediate Value Theorem
and the Weierstrass Theorem for Extremal Points.

7.3.1 The Intermediate Value Theorem

This result says thatf ([a, 1) is actually an interval and reads as follows.

Theorem 7.3. Consider a continuous functionf : [a,f! R. If ¢,d" f([a,Q) with c <d,
then[c,d $ f ([a, b).

Proof. Lety " (c,d), we need to prove that there isx " [a, i such thaty = f (x). To do this,
we use the same argument we have used to prove the Bolzano-Weierstrass Theorem.
Let ag,ln " [a, such thatc = f (ag) and d = f (ky), and debneg, = %(ao + ky). Without
loss of generality we assume thady < bg. We know then that eithery % f (e) or f (&) <y.
So we set I I
% ify%f(e) o b= & if y %f (eo)

a =
! e otherwise hy otherwise

Note that in any case we havé (a;) %y andy %f (b).
We depPne then inductivelye, = 5(a, + b,) and set
! !

i 0, i 0,
= ify%f(e) 4 by = O ify %f (en)

e, otherwise b otherwise

Thus, in this way we have constructed two sequencga, }; -, and{h.}; -, , having the following
features:

¥ {a,};-; is increasing and bounded above Hy
¥ {b},-, is decreasing and bounded below ks
¥, &a, = 5(b&a) foranyn" N\{0}.

¥ f(a,) %y andy %f (b,) forany n" N\{ O}.

The brst three points implies that{a,};-; and {b,}}-; converges to the same limit, some
x " [a,d. The last point yields, thanks to the continuity off , to f (x) %y andy %f (x), from
where we deduce thay = f (x), and thusy " f ([a, b). H

3
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7.3.2 The Weierstrass Theorem for Extremal Points

We have seen thaf ([a, ) must be an interval (by the Intermediate Value Theorem), we now
prove that it must be bounded. Actually, we prove something stronger, that the mak([a, b))

and min(f ([a, 1)) are well debned, for any continuous function debPned on a closed bounded
interval. The points where max{ ([a, 1)) or min(f ([a, b)) are attained are called theextremal
points of f.

Debnition 7.3. Letf :[a,f! R be a given function. We say thax, " [a,d is a minimum
point of f on[a, b if
#x" [a, 8, f(x)$ f(x).

Similarly, we say thatx' " [a,l is a maximum point of f on [a,l if
#x" [a,d, f(x)$ f(x).

Example 7.1. Consider the functionx %! |x| debned on[&1,1]. Since 0 $ |x| for any
x " [&1,1] and |x| = 0 if and only if x = 0, we get thatx, = 0 is the uniqgue minimum point
of the function on[&1,1]. On the other hand, sincegx| $ 1 for any x " [&1,1] and |x| =1 if
and only if x =1 or x = &1, we get thatx; =1 and x, = &1 are both maximum points of the
function on [&1, 1].

Theorem 7.4. Any continuous functionf :[a,! R has a minimum and a maximum point
on [a, 4.

Proof. m =inf {f (x) | x " [a, 1}, then there is a sequencéx, },-; contained in f, b such that

f (xn) ! m. By the Bolzano-Weierstrass Theorem, that sequence has a subsequepge}, -,
that converges to somex;, " [a,d. But, by the continuity of f, the sequence whose terms are
f (xn,) converges tof (x,). However, {f (X, ) }«=; iS @ subsequence dff (x,)},-;, SO it must
converge to the same limit, which means that (x,) = m, and so the inPmum is attained at
X; and so

#x" [a,B, f(x)$ f(x).

Using similar arguments, we can provide the existence of a maximum poit " [a,d. We
leave the details to the reader, and so the proof is complete. ]

We are now in position to prove that the range of a continuous function debPned on a
bounded closed interval, is a bounded closed interval as well.

Theorem 7.5. For any continuous functionf :[a,! R, there arec,d” R with ¢ <d such

that f ([a, ) =[c,d.

Proof. Let ¢ = min(f ([a,)) and d = max(f ([a,H)). Thanks to Theorem (7.4) these are
well-dePned Real numbers.

On the one hand, by debnition we get that for anx " [a,l,c$ f (x) and f (x) $ d, which
leads tof ([a,) ' [c,d. On the other hand, sincec,d"” f ([a,d) and c <d, by Theorem7.3
we get that [c,d' f ([a, ). Therefore,f ([a,d) =[c, d and the proof is complete. H

4



Math 4031 - Spring 2016 Continuous functions

7.4 Continuity of the inverse function

One of the consequences of Theoremg is that, given a continuous function,f : [a,j! R
the mapg:[a,g! [c,d debned via

g(x) := f(x), foranyx" [a,

is surjective, wherec,d" R are such that g,d = f ([a,d). Hence, iff : [a,gd! R is also
injective we get thatg:[a, ! [c,d is a bijection and its inverse functiong' * : [c,d]! [a,b
is well-dePned. Gathering all these facts, we can debne a unique funcfién : [c,d! R so
that

#x" [a,Q, f'1$f(x)=x and #y" [c,d, f $F'i(y)=y.

For sake of dePnition, we call the functiori' 1 : [c,d]! R the inverse function of f.
We now prove that the inverse function of a continuous and injective map is also continuous.

Theorem 7.6. Letf :[a,d! R be a continuous and injective function, and let,d" R such
that [c,d = f ([a,H). Then, f'?:[c,d! R, the inverse functionf, is continuous onlc, d.

Proof. Let y " [c,d and take a sequencéy,},-; contained in [k, d that converges toy. By
debntion, there arex, X1, X,,..." [a, for whichy = f (x) andy, = f (x,) forany n " N\{ O}.
Note as well thatf'(y) = x and f'(y,) = x, foranyn " N\{0}. So, to prove the
continuity of f' 1 at y we need to prove thatx, ! x. To do so, we show that{x,},-; has a
unique accumulation point, namelyx, and since itOs bounded, in the light of Theorem 5.3 we
obtain that x, ! Xx.

Let {Xn, }«=; @ Subsequence dfx,},-, that converges to some & [a, . By the continuity
off on[a, j we getthatf (x, ) ! f(®) ask! +%. However, sincgf (xn, )}.-; asubsequence
of {f (Xn)} =1 @andf (Xn) = yn !y = f(x), by the uniqueness of the limitf (x) = f (). Finally,
sincef is injective, we must havex = @, and so the conclusion follows. O

7.5 [EXercises

1. Letf :[&1,1]! R be a function that satispes
f(x)' Oifx" [&1,0] and 1' f(x)if x" (0O,1].

Determine whetherf is continuous atx = 0.

2. Letf :[a,d! R be a continuous function. Show that for anye" R, the set
fiie):={x" [ad]| f(x)= ¢

is closed.

3. Leta" (0,%) and consider a functionf : [&a,a]! R that satispes
#x,y" [&a,a, # " R, Ix+y" [&a,a =( f(Ix+y)=1f(x)+ f(y).

Prove that f is continuous atx = 0, and then show that it is also continuous ona, a.

5
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4. We say that a functionf : [a,f ! R has abxed point if there isx " [a,[d such
that f (x) = x. Prove that if f is continuous on &, such that a = min(f ([a,d)) and
b= max(f ([a, 1)), then f has a bxed point.

Hint: Study the sign of the functionx #! f (x) $ x.
5. Letf :[a,0! R be a function that satisbes:

(1) For any [ag,y] % [a,, if c,d" f ([ag, b]) with ¢ <d, then [c,d % ([ag, v]).
(2) Foranye" R, the setf'1(e):= {x" [a,d]| f(x)= €} is closed.

The aim of this problem is to demonstrate thaf is continuous on &, j. To do so, assume
by contradiction that f is not continuous at somex " [a, J and follow the next steps:

(@) Show that there are! " (0,+& ) and a sequencéx,},-; contained in R, that
converges tax so that

"'n" N\{O}, !<|f(xn)$ f(x)|.
(b) Prove using condition (1) that for anyn " N\{ O} there isy, " [a,  such that
lyn & x| ( Ixa $ x| and [f(yn) $ f(x)|=1!.

(c) Prove foranyn" N\{ 0} eithery, " f(f(xX)+ !)ory," f(f(x)$!). Finally, get
a contradiction using condition (2) and conclude.

6. Letf :[a,d! R be a continuous function. Show that there are, x* " [a, i such that

fF(xa) + f(x2)

() (=

( f(x*), foranyxy,x," [aH.

Using this, prove that for anyx;,x, " [a, there isx " [a, j such that

f () + 1 (x)

f(x) = .

7. Let m " N\{ O} be a bxed Natural number and consider the functioh : [0,1]! R
debned via

f(x)=x™, foranyx" [O,1]

Prove that its inverse, denoted)n ~:[0,1]! R, is well-debPned and continuous on [@].
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Week 8: Continuous Real-valued functions:
topological debnition

We continue the study of continuous Real-valued function using another point of view. So far,
we have used sequences to debne the continuity of a function. We now present a dePnition
based on topological notions, which in this setting means based on open intervals around a
point ®! R that have the following form

(8.1) (@" r,e+r):={x! R| " r<x # x<w+r}={x! R| [x" ®<r}

wherer ! (0,+% ). The set (8.1) is called theopen interval centered at w of radius r.

8.1 Topological debnition of continuity
The characterization of the continuity we introduce now is written in terms of " ".

Theorem 8.1. Letf :[a,J % R be a given function. Thenf is continuous atw! [a,f if
and only if

(8.2) &1 (0,+%), '"1 (0,%), & ! [a,b, [x" ®w <" =( [f(x)" f(®)|<!.

Proof. We Prst see the implication Y =), that is, suppose that (8.2) holds. Let{x,}}-; be an
arbitrary sequence contained ind, b that converges toxgwe need to prove thatf (x,) % f (®).

Let! ! (0,+% ) be bxed but arbitrary. Let us consider' ! (0,+$ ) given by (8.2 and
associated with!. Sincex, % w, there isN ! N such that |[x, " ® < " for any n! N with
N * n. Hence, by 8.2) we have that|f (x,) " f (®)| <!, or in other words,f (x,) % f ().

For the other implication we argue by contradiction. Assume thaf is continuous atxgand
that (8.2 is false. Then, there id ! (0,+$ ) such that forany" ! (0,+$ ) thereisx! [a,{
such that

X" B <" # 1% |f(x)" ()

By taking, " = % we can produce a sequence that convergegxtoby the condition |x," »| < %)
and such that! * |f (x,)" f (®)]. Since! ! (0,+$ ) doesnOt depend on the sequence nor on
", the latter implies that {f (x,)},-; cannot converge tdf (®), which yields to a contradiction.
Therefore, @.2) holds true and the theorem has been proved. ]

1
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Remark 8.1. Letw! (a,b and!! (0,+" ) be given. SeB = (f (w)# !,f (®) + !), that is,
the open interval centered at (®) of radius!. Then, condition (8.2) says that there is another
open intervalA = (& # ", @+ "), centered atw of radius ", such that

A$f'YB):={x! [ad|f(x)! B}.

Hence, from a topological point of view, a continuous function is a function, for which the
pre-image of an open interval centered dt(®) contains an open interval centered ag.

In the casesw = a or w= b, the same is true but with the slight modibcation that, instead
of the open intervalA = (& # ", @+ "), we need to consider the open intervals relative fa, b

[a,a+") % (@# " b.

1tOs important to remark that in 8.2), " depends in general oh and the interval [a, d, we
will see later that" can always be taken independently of.d_etOs see some example:

¥ Take f (x) = x™ for somem ! N debned on any intervald, j. Take ! [a, b Pxed.
b If m =0, we get|f (x)# f ()] =0, so (8.2 holds immediately for any” ! (0,+" ).
In this case," doesnOt depend dn ® nor the interval [a, 4.

b If m =1, we havelf (x) # f (®)| = |x# »|, so taking! = " in (8.2 the condition
holds. In this case," depends only onl.

b For the casem! N\{ 0, 1} we use the fact that
X" # B = (x# B)(x™ L+ x™ 2g+ x™ 3P + L+ x2g™ 3+ x@g™ 2+ @™ ),
Note that for any x ! [a, [, including x, we have|x| & max{| a|, |} . Hence,

|Xm! l+ Xm! 2m+ o+ Xmm! 2+ ﬂm! 1| & |X|m! 1+ |X|m! 2|wl + .+ |X||m|m! 2+ |wlm! l|
& m amax{| a|, |b} ™ *.

Therefore, combining these inequalities we
Ix™ # 2" | & |x # ®)| am amax{| al, |0} ™ 1.

So, |

" maéamax{|al,|b}™ ¢

works for (8.2). Note that in this case" depends onl and the interval [a,ld. Note
that " decreases its values as long ¢ or |b increase their values.

¥ Consider a functionf : [a,j' R that satisbes
(8.3) (x,y! [a, b, (#! R, #ix+y! [a,f =) f#x+y)= # (xX)+ f(y).

Let see that 8.2 holds at »! [a,J. Assume thata %= 0, otherwise useb instead ofa.
Note that (8.3 yields to
| n

(8.4) t)=f FPsmra =Xi”

af (a) + f (m).
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Hence, } {
Jf(a

If (x)! f (@)= |x! mla}%{.

If on the one hand,f (a) = 0 we get that the right-hand side equals zero, in which case,

any ! " (0,+# ) makes .2 to hold. On the other hand, iff (a) $ 0, then itOs enough

to take | = £7EL and (8.2) will hold.

In the latter case, we can prove that condition §.3) implies that @ is constant for any

x " [a,g\{ O}. Indeed, this comes from evaluatingd.4) at = a; if a = 0 the same arguments
work with binstead ofa. In particular, we get that there isc" [0+ # ), which doesnOt depend
on @ such thatf (a) = cda. This means that in the last example we have

(8.5) w,y" [ab, [f)! f(y)l&cak! vyl

Functions that satisbes 8.5 receive a special name, they are callddpchitz continuous
Moreover, the non-negative Real numberin (8.5) is called a Lipschitz constant off on [a, .

It is worthy to note that Lipschitz continuous functions, are actually continuous maps, and
have the remarkable property that! in (8.2) can be always taken independently of.dn fact,
r=" é% always works, wherec" R is a positive Lipschitz constant off on [a, .

All the examples we havg seen so far are actually Lipschitz continuous fungtion, however,
there are functions that donOt have this property. For instances, the functiarn’( * x debPned
on [0, 1] is not Lipschitz continuous. Indeed, if that were the case, there would k€' (0, +# )
so that ) ) —
%,w" [0,1], | x!  » &cak! .

Evaluating this at ® = 0 we get) X & cax forany x " (0, 1]. Since, by dePnitiorx = ) ié) X,
we get then that x & ¢ &x?, so dividing by x we Pnally get 1& ¢ ax. We know that the
function x '( ¢ ax is continuous atx = 0, so letting x goes to 0 we Pnally get & 0, which
cannot be. )

Although the x '( * x on [0, 1] is not Lipschitz continuous, it does satisbes an interesting
property (we leave the details of the inequality as exercise for the reader):

%,y " [0, 1], |) X! )

Let us point out that x ( ) X is then continuous on [01]. Indeed, for any" " (0,+# ), we
just need to take! = "? and (8.2) will be true for any " [0, 1]. Moreover, any function that
satispes a similar inequality is calletielder continuous . More precisely, giver# " Q* (0,1)
we say that a functionf :[a,d ( R is #-Helder continuous if

(8.6) % y" [ad, If(x)! f(y)l&cak! yl.

yl& [xt oyl

The notation x for x " [0, +# ) stands for the Real 51umber)”' XP, wherep" Z andq" N\{ 0}
are so thatga# = p. In particular, we say thatx '( * X is %-H@Ider continuous.

The functions we have reviewed have the particularity that, to prove their continuity prop-
erties using 8.2), we have provided a " (0, +# ) that doesnOt depend on the point we are
studying the continuity. So to speak, we have taken the parametéruniformly on the interval

3
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[a, . This fact, is actually general for function dePned on bounded closed intervals; it is not
necessarily true if the domain is not bounded. Therefore, we say that a functién: [a,! R
is uniformly continuous  on [a, j provided that

(8.7) "I#(0,+%), W # (0,+3%), "X, y#[al [x&y|<" = [f(X)&f(y)|<!.

It is clear that a uniformly continuous function is continuous. We now will prove that the
converse is also true for function debned on closed bounded intervals.

Theorem 8.2. Letf :[a,d ! R be a given continuous function. Thenf is uniformly
continuous on[a, .

Proof. Assume by contradiction that 8.7) doesnOt hold. Then, there is# (0,+$ ) and two
sequencg xp};-; and{y,},-; contained in [, i such that

1
"n# N\{ 0}, |xn&yn|<ﬁ and ! ( [|f(xn) &f(yn)l.

By the Bolzano-Weierstrass Theorem{x,}; -, and{y,},-, have converging subsequences, say
to w and W respectively. We can assume that both subsequences have the same numeration,
thatis, x,, ! wandy, ! wask! +$ . Sincex,&y,! Oasn! +$ ,thenx, &y, ! Oas

k! +$ ,which means thatxa= g. Moreover, by continuity off , we get thatf (X,, )&f (yn,) !

f(®) & f (@) = 0, becausexea= g, but this implies that ! ( 0, which cannot be. We conclude
then that f is uniformly continuous on g, 1. O

8.2 Exponential functions

We now present a function that plays a fundamental role in Calculus, the so-called exponential
function exp :R! R debne via
! [1]
expx)= lim 1+
n" +!

n

, foranyx# R.

S| X

Sometimes, it is also denoted by )! €*. Let us begin the study by proving that the function
is well-dePned, which in this case means that, giver# R Pxed the limit of {f,(x)}}-, exists
and it is a Real number, where | "

f(x) = '1+§ "

¥ Foranyn# Nandh# (&1,+$ ), we have
(8.8) 1+néah( (1+h)".

To see we use induction. The case= 0 is trivial, let us just focus on the inductive step.
Suppose that the result is true fom # N, then

1+(n+1) & ( 1+(n+1)&+n&?=(1+ n&)&1+h) ( 1+h)"&1+h)= @1+ h)"?,

4
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¥ Let N :=max{n! N| x> "N}, then {fy+n(X)}}=, is increasing. Indeed, note prst
of all that for any n! N\{ 0}, we havefy.n(x) > 0. Hence, forn! N\{ 0} bxed we

obtain
I n
f s . N+n+1 .
N+n 1(X) - n X é 1+ X
fn+n(X) (N+n+1)(N+n+Xx) N +n
On the other hand,(N+n+X) <1, so by 8.8 we get
! ! n . n ! n
1: N+n é_ N+n+x — lu X é 1+ X fN+I’1+1(X)
N+n+x N +n N+n+x N +n fn+n(X)
¥ Foranyn! N\{ 0}, if x< 1 we have
I n # $ +
f (x)-'N+n+XN+n- ! -
N+nlX)=  —C——— - an X
N +n 1" i
Since 7« < 1 we get by 8.8) that

1
1:N+n(X) # T

Therefore,{f,(x)};-; is bounded providedx < 1.

¥ Foranyn! N\{ O}, if 1 # x, by the Archimedean property, there ism ! N so that
=< 1, and since{f,(x)} -, is increasing we have
! X n maN+n) ! 1 n m

fuen0O # fmanm (9= 1+ i trx

Thus, {f,(X)}}-; is also bounded above if # x.

Gathering all there d rmations we get that, for anyx ! R, the sequencefy.+n(X)}}=; is
increasing and bounded below, so it must converge to some positive Real number. It is also
clear that the limit of {fy.n(X)};=; converges, ther{f,(x)};-; also converges, which means
that x exp(x) is well dePned.

8.3 Exercises

1. Letf :[a,d $ R be a continuous function. Suppose that (®) ! (0,+%). Show that
there is! ! (0,+ %) such that
& ! (" l,w+!1)' [a,b, f(X)! (O,+%).
2. Letf :[a,d $ R be a Lipschitz continuous function with Lipschitz constantc! (0, 1).

Prove that f has a unique bPxed point, that is, there is a uniqu& ! [a,d such that
f (x) = x. Hint: Consider a sequence debned inductively as follows:

& ! N\{ 0}, Xpe1 = f(Xn),

wherex; ! [a, is any point. Show that this sequence is a Cauchy sequence.

5
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3. f :R! R be a continuous function such that
"X Y#R, [x$yl%If(x)$ f(y)l
The aim of this problem is to show thatf (R), the range off , equalsR.

(a) Prove that f (R) is a closed interval, that is, either ¢, d], [c,+& ), ($& ,d] or R.
(b) Prove that forany x # R andy # (0,+ & ) with x = y we have

fx+y)<f(x) ( f(x3$y) <f(x).

Hint: Assume the statement is false and Pnd a contradiction using the Intermediate
Value Theorem.

(c) Prove that the only possible option is thatf (R) equalsR.

4. Letf :(a,b! R be a function that is uniformly continuous on &, b, that is, satisbes
(8.7) when replacing &, b with (a,b). Prove that there is a unique continuous function
g:[a,B! R such that

"x#(ab, f(x)=9(x).

Hint: Study the existence of the limit of{f (x,)}}, for any sequence contained ira( b
such thatx,! aorx,! b

5. The goal of this problem is to prove thatx )! exp(x) doesnOt satisfy8(7) when replacing
[, with R, that is, it is not uniformly continuous on R.

(a) Prove using the debnition o )! exp(x) that it has the semi-group property
that is,
"X,y # R, exp(X+y)=exp(x)aexp(y).
! n
Hint: Prove that if f,(x) .= 1+ 3 " then for some sequencgz,};-, that con-
verges to zero, we have
fa(x+y) 1

0,

fo(x) af,(y) 1+ 2,

1% 2z, %

(b) Show that exp(1)# [2, + & ) and that exp(n) = exp(1)".
(c) Conclude using a contradiction argument and the previous parts.
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Week 9: Uniform convergence of Continuous
Real-valued functions

9.1 Pointwise convergence

We have debned the exponential function expR! R via

I n
. ' X n
exp(x) = n|!ln;l" 1+ o forany x " R.

We have proved that the limit exists and it is a positive Real number. In other words, we have
shown that the sequence of functioh, : R! R given by

! 11}
fa(x):= 1+ %

n
satisbes the following property:

#x" R, f,(x)! exp(x).

In this case we say thaf , converges pointwise to exp(d on any interval [a, . In general
terms we have the following dePnition.

Debpnition 9.1. Letf :[a,d! R be a given function andf,},.; be a sequence functions
on[a, b, thatis, f, : [a,! R foreachn” N\{ 0}. We say thatf, converges pointwise to
f on[a,Qif

(9.1) #x" [a,g, # " (0,+$), WN " N, #n" N, N &n = [f,(X)( f(X)]| & !,

or in other words, for eachx " [a,ld we havef,(x) ! f(x) as a sequence of Real humbers.
Under these circumstances, we writg, ! f pointwise on|[a, b.

Let us point out a few things about pointwise convergence.
¥ Consider{f,},-;, a sequence of continuous functions oa,[d, that is, eachf, is con-

tinuous on fa, 4. If f, ! f on [a,[, to some functionf : [a,fd! R, thenf can be
continuous but also discontinuous:



Uniform convergence Math 4031 - Spring 2016

! n
1. Considerx !" fn(x):= 1+ 2 " we know that eachf , is continuous on any interval

[a,. The exponential function is continuous at anyx # R. Indeed, since for any
x# ($1,1) we have

+ 0, o)
1+ x %exp(x) /ol$x

Then, by the Squeeze theorem I" exp(x) is continuous atx= 0. Moreover, since
exp(® $ exp(x) = exp(®) &(1$ exp(x $ ®)),

we get that x " exp(x) is continuous at anyx# R. Hence,{f,}:>, converges
pointwise on any interval p, i to a continuous function, namely, tox I" exp(x).
2. Consider the sequence of functions debned wWa" x" debned on [01]. We have
that setting f,(x) = x"
fn(0)=0 and f,(1)=1.

Furthermore, since for anyx # (0,1) we have thatx" " 0Oasn" +& . Indeed, for
any x # (0,1) bxed, there isk # N such that x % X~ and so,

k+1?
# $
k " 1 1 K
" o = % = .
R | @+ "1+T k+n

Since the right handside converges to zero as" +& , by the Squeeze Theorem
we get our initial claim. Hence, the sequence of function converges to the following
discontinuous function. %
ift# [0, 1
f(x)= 0 ! t#10.1).
1 ift=1.
¥ N # N given by (9.1) depends in general ox # [a,J as well as= # (0, + & ). This means

that we cannot expect to have in every situation the sam#8l for all x # [a,. To see
this, consider the following sequence of functions on, [J:

&
( nax if t # [0, 11],

fa(x)=, 28 nax ift# (2
) 0 if t# (2,1].

Clearly f,(0) " 0, and furthermore, since for any # (0, 1] there isn # N such that
X < % we get thatf, " O pointwise on [Q1]. Letk # N\{ O} and takee # (0,1), by
(9.1 there isN # N so that

# $

1
N %n ' fn - |<e<l
Kk

But, fk(%) =1, which means thatN %k is not possible, and so we must hade< N .

These remarks show that the notion of pointwise converge is not strong enough to preserve
continuity of function when passing into the limit. For these reasons we introduce a new notion
of convergence for functions.
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DePnition 9.2. Letf :[a,d! R be a given function andf,};-, be a sequence functions on
[a, b, that is, f, : [a,f! R for eachn™ N\{ 0}. We say thatf, converges uniformly to
f on[a,n if

9.2) #"0,+$), N " N, #n" N, #x" [a,0, N&n =" |f,(xX)( f(X)|&!,
Under these circumstances, we write, ! f uniformly on [a, b.
Note that on (9.2) the condition
#x" [a,0, N&n = |f,(x)( f(X)|&!
is equivalent to

N&n =) fo(f) &!

where) ), =sup{|g(x)|| x" [a,} for any functiong:[a,f! R, is called thesup-norm
of g on [a,J. Consequently, 0.2) simply means that each)f, ( f), is a Real number and
)fn( f), ! Oasn! +$ ;this must be understood as convergence as Real number.

We now show that the notion of uniform convergence is more appropriate to handle con-
tinuous functions rather than the pointwise convergence.

Theorem 9.1. Letf :[a,d! R be a given function andf,}}-, be a sequence of continuous
functions on[a, [, that is, eachf, : [a,j ! R is continuous. Suppose that, ! f uniformly
on [a, , thenf is continuous on[a, b.

Proof. Let " [a,j and! " (0,+$%$ ). Sincef, ! f uniformly on [a,H, there isN " N such
that

n (1) &

Furthermore, sincex *! fy (x) is continuous, there is" " (0,+$ ) such that
BB X (E<T = (@< g
Also, note that for any x " [a, b, including o we have
[FO)C vl &) ()
Hence, combining all these inequalities, for any " [a,d with |x ( ®| < " we get

[F() ( F®)] & [F () ( fN(X)|'+ [fn (%) ( ()] + [fn () (T (m)]

&)F (fn)y +3+)f( F)
TR I
4+ 4+ =1
& 3 3 3
From where we conclude thaf is continuous atxg and since this is a generic point, we have
proved that f is continuous on @, 4. O
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9.2 Cauchy criterion

From this onward we start noticing that the set of Real numbers and the set of all continuous
functions share several properties. For example, both are closed under:

¥ algebraic combinations, that is algebraic combinations of (Real numbers)/(continuous
functions) are a (Real numbers)/(continuous functions).

¥ limiting process, that is, the limit of a convergent Sequence of (Real numbers)/(continuous
functions) are (Real numbers)/(continuous functions).

In the last point we are of course talking about uniform convergence. Many others properties
are common to Real numbers and continuous functions, and the key point is to ldt!, play
the role absolute value.

Recall that a sequence of Real numbef,} ., converges if and only if it is a Cauchy
sequence, that is,

"T#(0,+8 ), N #N\{ O}, "n,p#EN, N&nNn = [Xpp( Xp| &I
In a similar way we can debPne &auchy sequence of functions

Depnition 9.3. Let {f,},-; be a sequence of functions ofa, . We say that{f,},., is a
Cauchy sequence of functions provided that

(9.3) "I #(0,+$), N # N\{ O}, "np#N, N&n =1 fo (ful, &!.

Similarly as for Real numbers, if{f,}}-, converges uniformly to some function, then it is
a Cauchy sequence of functions; we leave the details as exercise for the reader. The converse,
as well as for Real numbers turns out to be true.

Theorem 9.2. Let {f,}} ., be a Cauchy sequence of continuous functions @4, then there
is a functionf :[a,§) R continuous such thatf, ) f uniformly on [a, .

Proof. The proof is divide into two parts, Prst we construct a candidate to limit, and then we
prove that the candidate is actually a uniform limit of {f,}}_; .

¥ Note that for any x # [a, ] we have
[frep() ( Fa() & Frap ( Frly .

Hence, for anyx # [a, i, the sequence of Real numbefs ,(x)}. -, is a Cauchy sequence
(in R). Hence, by the completeness & the sequencef,(x)}}-, converges. Let us call
this limit Ly (the subindex is because the limit depends ox). Note that this can be
done for anyx # [a, ], and so, we can debne a function: [a,§) R via

"x# [a, b, f(x):= Ly.

The function f is our candidate to limit, because if , ) f uniformly on [a, d, we must
also have thatf, ) f pointwise on g, . The latter is because

"x# [l [f)( ()& ( faly .

4
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¥ Letn! N\{ 0O} such that foranyn! N with N " n we have
Hop$ frth " !
In particular, we have for anyx ! [a, that
[foep(X) $ Fa(x)] " !
Then, letting p % +& we get
fx)$ f ()" !,
But this is true for any x ! [a,d and anyn! N with N " n, which means thatf,, % f

uniformly on [a,d. The fact that f is continuous on &, is a direct consequence of
Theorem 9.1, and so the proof is complete.

9.3 DiniOs theorem

We have seen that the notion of pointwise convergence is weaker than the notion of uniform
converge, and that the Prst one doesnOt imply the second. There are few instances in which
both notions of convergence coincide, one of these is the so-caldéuiOs Theorem , which we

read as follows.

Theorem 9.3. Let{f,},-; be a sequence of continuous functions on [a, b and letf : [a,d % R
be a continuous function on [a, . Suppose that converges f, % f pointwise on [a,B and that
one of the following holds:

¥ for any x ! [a,1, the sequence {f(X)}}2; is decreasing.

¥ for any x ! [a,1, the sequence {f,(X)} 2, is increasing.
Then T, % f uniformly on [a, .

Before exhibiting the proof, let us make few comments about this theorem:

¥ This result is a somehow generalization of the monotonic sequences Theorem to contin-
uous functions. In this case, the functiori is playing the role of upper bound.

¥ The monotonic assumptions are fundamental to obtain the result, which can fail if this
is not consider, even if is continuous; see Exercise.

The proof of DiniOs Theorem requires some tools we havenOt introduced so far. We make now a
stop in the presentation of continuous function to study the so-calledeine-Borel Theorem

5
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9.3.1 Heine-Borel Theorem

We explained that the underlying idea behind the topological debnition of continuity :
[a,0! R at wis that any set of the form

{x" @b f(x)" (f(m)#!.f(g)+!)

must contain an open interval that containsxg So to speak, any set having this property is
called open aroundkg Formally speaking we say thatA $ R is open if for any for any x " A,
there is an open interval centered ak of radiusry " (0,+ %) contained in A, that is

(9.4) & " A 1" (0,4%), (X# I,X+T)$ A

Itis not di! cult to see that any open interval &, b) is actually an open set in terms of the
preceding debPnition; we leave the details as exercise for the reader.
Let be a closed bounded intervalg,j and r " (0, +%), we know that we can cover the

interval [a, d using all the possible open interval of the formsx(# r,x + r), that is,
!
[a,0 % (X# r,x+r).

x! [a,b]

We readily see that, since " (0,+ %) is bxed, we donOt need to use all the' [a,  to cover
[a, d but a Pnite number of them, that is, we can select;, X2,...,Xp " [a, 1 such that

P
[a,tj$ (Xk# rXg+ r),
k=1
that is, we can pass from ararbitrary open covering to a Pnite open covering of [a, .
What we have just described is the basic idea behind the Heine-Borel Theorem, although
instead of having open intervals of bxed radius we allow them to vary.

Theorem 9.4. Let {O;}i, be a collection of open sets & that covers the intervalla, b, that
is I
[a, b $ O.
il

Then, there areiy,...,i, " | such that
1P

[a, q $ Oik .
k=1
Proof. Let us argue by contradiction. Suppose that there is a coverind);};,, of [a,d that
doesnOt have a Pnite family of elements that covers the internal. If that is true, then either
the subinterval [a, %b] or [%b, b] cannot be covered by a Pnite family of elements §O;}i: .
Hence we set

a = a if [a, %3] cannot be covered by a bnite fO;};
! &2 otherwise

b = 20 if [a, 222] cannot be covered by a bnite ofO;}i:
b otherwise
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Note that in any caseb; ! a; = %(b! a). Since the interval py, bp] cannot be covered by a
Pnite family of elements of O;};, |, the same is true for one of the subintervals{, @] or
[%, b]. Hence, repeating the preceding process we can create a a sequence of intervals

P (= PFET o PR I - P o Y I [V o' I =W o |

|
with [a,, ] = zin(b! a). We get then that there isx # [a, ij such that {x} = :]:1 [an, ]
Now, since{O;}i, cover g, there isi # | such that x # O;, and since eaclO; is open
there isr; # (0,+$ ) such that
(X! ri, X+ I'i) " 0.

Note that x | a, % 5(b! @) and b, ! x % 5-(b! &), Hence for takingn # N such that
1
Z—n(b! a) < 2ar;
we get that [a,,b,]" (X! ri,x+ ;)" O;, which contradicts the fact that [a,, b,] cannot be

covered by a Pnite family of elements dfO;};, ;. So, the conclusion follows. O

Remark 9.1. Note that the result is still true if the collection{ O;};;, is open but relatively to
[a, b, that is, if the following holds

&i#la&X#Oiaer#(O,+$)! (XI rx,X+rx)([a7q" Oi'
The exact same proof works; we leave the details for the reader.

We are now in position to prove the DiniOs Theorem

Proof of Theorem9.3. Suppose that the sequencedf ,(x)},-; are all increasing. Hence, in
particular, f,(x) %f (x) for any x # [a,. This is becausd (x) is the pointwise limit (and so,
under these circumstances the supremum) 6f ,(x)},-; -

Take! # (0,+$ ). For everyn # N\{ 0} we set

Oh={x#[a,g|f(x)! I <f,(X)}.

Clearly, since the sequencgf ,(x)},-,; are all increasing,0, " On+1 for anyn# N\{ 0}.
Also {O,}1_, is a collection of open subsets relative t@[h whose union coversg] b:
¥ Let x # [a,, sincef,, ) f pointwise on B, there isN # N such thatf (x)! fy(X) =
f(x)! fn(X)] <!, and sox # Oy . This leads then to say that{ O,}]_, covers &, H.

¥ Let n # N\{ O} to be bxed and letxg# [a,ld, we know thatf ! f, is continuous atxg
and so, forl== 11 f (®)+ f,(®) there is", # (0,+$ ) so that

& #[a,f, [x! @ <"y = [(f(X)! fa(x) ! (F(B)! fa(@)| <k
In other words, we have that eaclO, is relatively open to g, j because:
(! ", @+ ") ([a,0" On.

By the Heine-Borel Theorem and Remark9.1), there is an integerN # N\{ O} such that
[a,d " Oy. This means thatf (x)! ! <fy(x) for any x # [a,. Thus, for everyn # N
with N % n, we havef (x) ! | <f ,(x) %f (x) for all x # [a,d. This proves+ ! f,+ %!
wheneverN % n, and so the conclusion follows. O
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9.4 EXercises

1. Letf :R! Rbeagivenfunction. Foranya" R,letf,:R! R be the shifted function
#x" R, fax)=f(x$ a).
(@) Show thatf is continuous if and only if, whenevefa,};_, is a sequence iR which
converges to zero, the shifted functionfs,, converge pointwise td on R.
(b) Show thatf is uniformly continuous if and only if, whenevef a,}; ., is a sequence
in R with a, ! 0, the shifted functionsf,, converge uniformly tof on R.

2. Let {f,}}-; and {g.},-; be two Cauchy sequences of continuous functions o, K.
Show, using the Cauchy criterion, that there is a continuous functioh : [a,§! R such
that f,, ag, ! h uniformly on [a, b.

Hint: Prove that both sequences are uniformly bounded, that is,

w " (0,+&), #n" N "fp'y (M) " g’y (M

3. Let {f,},-;, be a sequence of continuous functions om,j and a sequencec,}; -,
contained in [Q + & ) such that

!n
#x" [a,8, |f(X)]( ¢ and «! S" R
k=1

Let {sn};-; be the sequence of continuous functions oa, j debned via:

In
#x " [ad, #n " NV{ O, sa(X):=  fa(X).
k=1

Prove that {s,};-; converges uniformly ond,H to some functions : [a,d! R. Iss
uniformly continuous on g, §?

Hint: Prove that {s,};-; is a Cauchy sequence of functions.
4. Prove that a setA is closed if and only ifR\ A is open.

5. Prove that the sequence of functiodf,}} -, given by

#
F(x) 1= 1+§ "

converges uniformly tox *! exp(x) on any closed bounded intervald, 4.
6. Show that {f,}}-;, the sequence of continuous functions on,[] given by
#x" [0,1], #n " N\{ 0}, f,(X)=(n+1) a&"a@l$ x),

converges pointwise to zero, but it fail to converge uniformly to zero. Does this contradict
the DiniOs Theorem?
n

Hint: Evaluatef, at x = 7.
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Week 11: Introduction to integration theory

We begin the study of one of the pillar of calculus, namelyntegration. Along this part of the
course we mainly focus on th&®iemann integral , however at the end of the course we will
present a short overview orLebesgue integral .

Unless otherwise stated, we focus on bounded functions debned on a bounded closed interval
and whose values belong tR. Recall that a function is said to be bounded if

me=inf{f(x) ] x! [ad! R M :=sup{f(x)]| x! [a ' R

11.1 Introductory example

From a practical point of view, the integral of a non negative function can be interpreted as
the area of the regionon the xy-plane limited by the curves

y=f(x), y=0, x=a, x=bh.

For example, let us consider the functiori (x) = x2 debned on [p1]. There are several way
to estimate the area under the curve, but we basically use two, one that approximates it from
below and another that does it from above.

We begin by takingn ! N\{ 0} and then dividing the interval [0, 1] into n subintervals
whose lengths aret, that is, setting x, := % forany k! {0,...,n}, we consider the intervals

Xk 1, %] " [0,1], #k! {1,...,n}.

On each of these intervals, let us denote by the area of the region on thexy-plane
limited by the curves
y=x% y=0, X=Xg1 X=X

Note that xZ, ; $ x*$ x2, , for any X ! [Xw 1, Xk], from where we may assume that
X2 1(Xk %X 1) $ Ak $ XE(Xk YoXki1 1).
The latter yields to

(k %1)2
n3

k2
$AS PEL
If we call A the area of the region limited by the curves

y=x% y=0, x=0, x=1,
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we immediately see thatA = = |_, Ay, from where get the estimates
1 n n 1 n n
— (k! 1P AT = KA
n n
k=1 k=1

At this point we might state an intermediate result regarding sums:

Lemma 11.1. For any n# N\{ 0} we have

" n2+ n o 2&n%+34an%+n
k= > and ke = 5
k=1 k=1

Hence, by Lemmall.1we have that

2an*+n?! n, , 2an®+3an?+n
6 ans 6 ans

Finally, sincen # N\ { O} is arbitrary, we can letn $ +% and so, by the Squeeze Theorem
we get that A = 1.

This example shows the underlying ideas behind the concept of Riemann integral of a
function. However, we need to be careful and not take this as the depbnition of the Riemann
integral, but only as an application; the idea only works if the function has non-negative values.
Note that we have talked aboutareasbut we have never debned them in mathematical terms.

11.2 Riemann integral for piecewise constant functions

We turn to a formal debPnition of the Riemann integral of a function. We Prst introduce
the simplest class of functions for which this integral can be debned, and later on, we give a
debnition that works for a wider class of mappings, which in particular includes the continuous
functions.

Let | & R be a bounded interval, that is, for some, b# R with a" b, | agrees with one
of the following sets

(a,9, [a,D, (aB, [ah

Recall that if a = b then in the brst three situations we getl = ' and in the last one
| = {a} = {b}. In any case, we debne thiength of the interval |, denoted by!(l), via
I(1):= b! a.

Note that this means that if | and J are two bounded interval, then

1(J=" = 1((J)=0.
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11.2.1 Partitions of intervals

One of the key tools required to introduce the concept of Riemann integral of a function is the
notion of partition of an interval.

Debnition 11.1. Let a,b! R with a < b. A partition P of [a, is a Pnite collection of
nonempty pairwise disjoint intervals that coverga, j. In other words, P = {14, l,...,I}
where each ¢ is a nonempty interval contained in[a, j such that

"x! [a,0, #k! {1,...,n}, x! Iy.
Under these circumstances, we debne theesh of P via
PSS :=max{!(l),...,! (Ix),..., ' (I.)}.

Remark 11.1. Alternatively, we can dePne a partition ofa, j as a Pnite collection of points
P = {Xo, X1,...,Xn} With Xo = a and x, = b, so that

X! [a,0 and xux1%xx, "k=1,...,n.

Under these circumstances, eacky is called anode of the partition. Furthermore, the mesh
of P is then given by

PP :=max{X; & Xg, ..., Xk & Xki 1, ..., Xn & Xp1 1}.
We leave the details as exercise for the reader.

In the light of the preceding remark, it is not di cult to see that, given a partition
P = {l4 I,...,1,} of [a,B, the length of the interval [a, is the sum of the length of
the subintervals of the partition, that is,

In

&, d) = ().

k=1

Moreover, if [c,d ' [a,d, then

I n

(e, )= (e, d( 1)

k=1

To see this is enough to notice thaP = {[c,d|( I4,...,[c,d ( I,}\{ )} is a partition of [c, d.
Given two partitions Py = {l4, I,..., Iz} and P, = {J4, Jo,...,Jn} Of an interval [a, d,
we debPned theecommon rePnement of P, and P,, denotedP,# P,, as the partition

"M

P# P, = {|i(~]j}\{ )}

i=1j=1

Example 11.1. Let P, = {[0,1),{1},(1,2),[2, 3]} and P, = {{ 0}, (0,1],(1, 3]} be two parti-
tions of the interval [0, 3], then

P# P, = {0}, (0,1),{1},(1,2),[23].

3
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11.2.2 Piecewise constant functions

Given a partition P = {I4, I,,...,1,} of [a,d, we say that a functionf : [a,f ! R is
piecewise constant relative to P if there arec,,...,¢ " R such that

f(X) = &« wheneverx " Iy.

Example 11.2. Let P = {[0,1),{1}, (1, 2]} be a partition of the interval[0, 2], then
!

%2 if x" [0,1)
1 if x=1

f(x)=,
a1 itxr @12

is a piecewise constant function relative t® debned ono, 2].

Note that if f : [, ! R is piecewise constant relative to a partitiorP; and to another
partition P, then it is also piecewise constant relative to their common rePnemeRi# P,.
This means in particular that a function can be piecewise constant relative to several partitions
at the same time. For this reason, it is convenient to introduce a new debnition that avoids
pxing beforehand a partition.

Debnition 11.2. We say that a functionf : [a,J ! R is piecewise constant on [a,Q if
there is a partition P = {I, I,,...,1,} of [a,d so thatf is piecewise constant relative té.

It turns out that for the class of functions that are piecewise constant on an intervaa[H,
the Riemann integral can be debned in simple terms.

Debnition 11.3. Letf : [a,d ! R be a piecewise constant function, then itRiemann
integral is debned via the formula:

f= al(l),
a k=1
whereP = {I4, I,,...,1,} is any partition of [a,  for which f is piecewise constant relative

to P and eachc is the value off on the intervall.

Remark 11.2. Note that in DePnition 11.3 the value of abf is independent of the partition

taken. Indeed, ifP; = {I4, I5,...,15} and P, = {J4, Jo,...,Jm} are two di erent partition
associated withf , that is, there arecy,...,c," Randds,...,d, " R such that
f(x)= ¢ wheneverx" I; and f(x)=d wheneverx" J;.

Sincef is also piecewise constant relative tB,# P, we have that
f(x)=e; wheneverx" I;$J;.

Note that if I; $ J; = %thene; can be any Real number, but ifi $ J; & %thene; = ¢ = d,.
Hence,
& & & & &
ga()= ca !1;$J)= e; a(li$J)

i=1 i=1 j=1 i=1 j=1
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Similarly,
Im Im In In Im
dj éI(JJ): djé Ll ! JJ): € é.l(||| JJ)
i=1 i=1 i=1 i=1 j=1
From where we get that
In Im
cal(l)= g al().
i=1 i=1

Example 11.3. Let us pick up the data on Exampl&l.2, then

t =24(0,1)+1a{1)" 1a((1,2)=2+0" 1=1.
0

Let us point out some properties of the Riemann integral of a piecewise constant function

f :[a,d# R; for more general properties we refer to Exercige

¥ If f is constant all along §, 1, that is, if f (x) = cfor any x $ [a, J, then

b
f = calb" a).

a

¥ If f is bounded, that is,m;, M; $ R, then

b
me &4b" a) % f %M, ab" a).

a

¥ If f is non-negative all alongd, 1, that is, if f (x) $ [0,+& ) for any x $ [a, [, then

b
0% f.

a

¥ For any ¢ $ [a,l, if there are other piecewise constant functionk; : [a,d # R and
f,:[c,d# R such that

f(x)=fi(x), 'x$[ac, and f(x)= fr(x), 'x$ (cA,

then " n n

11.3 Riemann integrable functions

We now focus on the debnition of the Riemann integral for an arbitrary bounded function

f :[a,d# R, not necessarily piecewise constant.
We say that a functiong: [a,d # R majorizes f on [a, b if f (x) % g(x) forany x $ [a, .
Similarly, we say thath : [a, # R minorizes f on [a, if h(x) % f (x) for any x $ [a, .

As we have shown in the introductory example, the idea of the Riemann integral is to try to

5
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integrate a function by Prst majorizing or minorizing that function by a piecewise constant
function, for which we already know how to dePne the Riemann integral.

It is worthy to notice that sincef :[a,§! R is supposed to be a bounded function, then
the constant functionsx "! my andx "! My minorizes and majorize$ on [a.l. Furthermore,
these functions are in particular piecewise constant, so the sets of Real numbers

! n # $
b #
A = g ﬁg ‘[a,d! R is piecewise constant and majorizes on [a, b
! n ab # $
Bs = h ﬁh ‘[a,8! R is piecewise constant and minorizes on [a,

a

are non-empty. Moreover, ifg: [a,d! Randh:[a,j! R are function that majorizes and
minorizesf on [a, b, respectively, then

ms # g(x), and h(x) # My, $x %la.b.

In particular, A¢ is bounded below andB; is bounded above. Therefore, by the Supremum
axiom, we have that their inPmum and supremum are well-debned Real numbers.

Debnition 11.4. Letf :[a,fd! R be a bounded function. We debne thgoper Riemann
integral of f on [a,d by

. I $

f :=inf g ﬁg ‘[a,gd! R is piecewise constant and majorizek on [a, i
a a

and thelower Riemann integral of f on [a,j by
" ', # $
f :=sup h ﬁh ‘[a,0! R is piecewise constant and majorizefs on [a, b

a a

Note that we alway have

b b
m; ab&ay# f# f# M;ab&a).

a a

The inequality on the middle can be strict, for example consider the function
%
o on
F(x) = 1 !fx 0Q " [0, 1]
0 ifx %[0,1]\ Q

If g:[0,1]! R is a piecewise function that majorize$, then g must be bounded below by 1
except at a Pnite number of points, and ih : [0,1]! R is a piecewise function that minorizes
f, then h is bounded above by 0 except at a Pnite number of points. Thus,

" b 5
f#0< 1# f.

a a
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In the special case that the upper and lower Riemann integrals agree and are Real numbers,
we say that the function isRiemann integrable and we then debne itRRiemann integral
on [a, g via

Remark 11.3. If f :[a,fJ! R is piecewise constant and bounded, thdn majorizes and
minorizesf the same time ona, . Hence it is clear thatf is Riemann integrable.

Remark 11.4. The debnition of Riemann integrable functions we have adopted is specially
suited for bounded functions, as a matter of fact only bounded functions can be Riemann
integrable. Indeed, iff : [a,! R is Riemann integrable, by the depPnition of the upper and
lower Riemann integrals we get that there are piecewise constant functidns[a,j! R and
h:[a,g! Rsuchthath" f " g, and since piecewise constant functions are boundédmust

be bounded too.

11.4 Exercises

1. Prove Lemmall.l
Hint: Show that

nm+1 nn nn nn
k3= k’+34 k*+34& k+(n+1)
k=1 k=1 k=1 k=1

2. Let Py = {l4,...,15} and P, = {J1,...,Jn} be two given partitions of g, j. Show that

#P1# Po# " min{#P1#, #P,#}

3. Letf :[a,f! R be a piecewise constant function ora[. Show that x $! |f (X)] is
piecewise constant ond, b.

4. Letf,:[a,f! Randf,:[a,f! R be two piecewise constant functions ora[H.

(&) Use the notion of common rePnement to prove that for any % R, the function
f,+ ! &f, is piecewise constant o j and then show that
by Py by
(f o+ &fp) = fi+14&4 f, & %R.

a a a

(b) Use the notion of common rePnement to prove that the functions n{ih,, f,} and
max{f,,f,} are also piecewise constana[h.

(c) Use the notion of common rePnement to prove that the functiofy, &f , is piecewise
constant on R, d. Prove or give a counterexample for the following formula
by Py by
(fréf) = fia f;
a a a
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5. (Riemann sums) Letf :[a,fd! R be a bounded function and® = {l4, I,,...,1n}
be a partition of [a, j. We debne theupper Riemann sum of f relative to P by

In
UF,P):=  suplf(x)| x" Lal(ly,

k=1
and the lower Riemann sum of f relative to P by

In
L(,PY:=  inf{f ()| x" LJal(ly).
k=1

(a) Prove that U(f,P ) and L(f, P ) are well-dePned Real numbers.

(b) Letg:[a,d! Randh:[a,fd! R be two function that majorizes and minorizes
f on [a, b, respectively. Suppose thag and h are piecewise constant relative t®.

Prove that n n
b b

UGP)# g and  h# L(f,P).

a a

(c) Prove that

b
f =inf{U(f,P) | P is a partition of [a, b}

a

and n
b

f =sup{L(f,P)| P is a partition of [a, d}.

a

6. Suppose thatf :[a,j! R is Riemann integrable.

(a) Suppose thatf is non-negative all alongd, d. Show that

b
(11.1) o# f.

a

If (11.7) holds, can we conclude that is non-negative? Prove this or give a coun-
terexample.

(b) For any c" [a,B, if there are other Riemann integrable functions; : [a,c]! R
andf,:[c,d! R such that

f(x)=fi(x), $x" [a,d, and f(x)= fy(x), $x" [c,A,

Show that " " "



Math 4031 - Advanced Calculus |

Instructor: Dr. Cristopher HERMOSILLA
Louisiana State University - Spring 2016

Week 12: Riemann integrable function

The class of functions that are Riemann integrable is wide and!dcult to characterize; it is
much larger than the set of continuous functions. For this reason, we now turn our attention
into criteria that ensure that a function is Riemann integrable.

12.1 Basic properties of Riemann integrable functions

It can be proved that algebraic combinations and min/max functions of piecewise constant
functions are also piecewise constant functions; see Exercise 4, Week 110s notes. Hence, it is
natural to imagine that algebraic combinations and min/max functions of Riemann integrable
functions are also Riemann integrable. This is true, but their proofs are not simple extensions.
Furthermore, in most cases an exact formula for the value of the integral cannot be given.

12.1.1 Linear combinations of Riemann integrable functions

We begin with the simplest cases which corresponds to linear combinations of Riemann inte-
grable functions. In this case, it is possible to provide an explicit formula for the Riemann
integralOs value.

Theorem 12.1. Lletf;:[a,d! R andf,:[a,f! R be two Riemann integrable functions
on[a,d. Then, forany! " R we have thatf; + ! &f, is Riemann integrable with

b 'p b

(Fo+1 &)= f,+14& f,
a a a

Proof. The case! = 0 is trivial, so we might either assume! > 0 or! < 0. We only do the
case! > 0, the other is similar and is left as exercise for the reader.

Let " > O be given but arbitrary. Sincef; is Riemann integrable, there are two piecewise
constant functiong; : [a,f! Randh;:[a,d! R suchthath, # f; # g, and

!b n !b !b n
—# fi# h, + —.
91$2 . 1 ) 1t 5

a

In a similar way, there areg, : [a,J! R andh,:[a,f! R, piecewise constant ond, [, such
b n b b

agz$2—|# afz# ah2+E.



Riemann integrable functions Math 4031 - Spring 2016

Note that h,+! h, and g, +! g, are both piecewise constant, and the prst one minoriziest+ ! & »
and the second one majorizes it. Hence, by debnition of the lower and upper Riemann integrals
and the properties of the Riemann integral over piecewise constant function we have

'y Py 'y Py — Py Py Iy
hi+la hy= (hy+!dy)! (fi+!dy)! (fi+!d)! (at!'d@p)= qt!a .
a a a - a a a a
Note that the left and right hand-sides also satisfy
Py by by Py by by 'y Py
f1+! a f2" " h1+! a h2 and 91"‘! a gzl f1+! a f2+".
a a a a a a a a
From where we get that
by by by L Py by
fo+1a fp" "1 (f o+ ! &fy) ! (fy+ ! &fy)! fio+1a fo+".
a a a a a a

Finally, the conclusion follows because the latter is true for any# (0,+$ ), so we get that

!b 'b !b b

fi+1 & fo= (fi+1 &)= (f + ! &)
a a a a

12.1.2 Max and Min functions of Riemann integrable functions

Let us now pass to the case of max and min function.

Theorem 12.2. Letf;:[a,d % R andf, : [a,] % R be two Riemann integrable functions
on [a,d. Then, max{fq,f,} and min{fy,f,} are Riemann integrable.

Proof. We focus on the case mdx,f,}, the other one is similar and left as exercise.

The proof starts in a similar way as the one given for Theorem?2.], that is, let " > 0 be
given but arbitrary. Since, for eachi = 1, 2, the function f; is Riemann integrable, there are
two piecewise constant functiory : [a, % R and h; : [a, % R such thath; ! f;! g and

! b n ! b ! b n

AL 1 + _
] O 4 ) fl ! ) hl 4,
Note that max{hi, h,} and maxXg;, g.} are both piecewise constant ora[ b, and furthermore,
max{hy, ho} ' max{f,,fo} ! max{qgi, g}.

Hence, by debnition of the lower and upper Riemann integrals we have

! b ! b J_b ! b
max{ hy, hp} ! max{f,f,} ! max{f,f,} ! max{ g, O} .
a a a a
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From where
- Py Py -
0! max{fq,fo} " max{fq,f,} ! max{ g, &} " max{hy, hy}.
a _a_ a a
By Theorem 12.1, we have that
! b ! b ! b
max{ g:, &} " max{hy, hy} = (max{ g, L} " max{hy, hy})
a a a

On the other hand, for each =1, 2,
g=h+(g" h)! maxhy,hx} +(g" h))+(g" hy),

which means that maxg,, g;} is bounded above by the right hand-side of the latter inequality.
Thus, by the properties of the Riemann integral for piecewise constant functions we get

'p 'p b b 'b

(max{g:, g} " max{hy, hy})! " hy + %" h,

a a a a a

Note that by the initial assumption, the right hand-side is less than or equal tb, hence

b !b

0! max{f,f,} " max{f,fo} ! .
a a

Since,! # (0,+$ ) is arbitrary, we get that the upper and lower Riemann integrals agree, and
the proof is then complete. O

Given a functionf : [a,] % R, we debne itspositive part by f. = max{f, 0} and
its negative part by f, := min{f, 0}. Note that |f| = f. " f,, and so, iff is Riemann
integrable, then so are ., f, and|f|.

12.1.3 Multiplication of Riemann integrable functions
We would like now to prove that iff; : [a, % R and f, : [a,l] % R are Riemann integrable
on [a, b, then do it is f1 & ,. Note that

f]_éfzz %(f1+f2)2" ff" f22

Thus, to prove that f, &f , is Riemann integrable we only need to show that for any Riemann
integrable functionf : [a,] % R, its square is also a Riemann integrable function. Then, the
result will follows as consequence of Theoreh?.1and the following one.

Theorem 12.3. Letf :[a,lj % R be a Riemann integrable function, theh? is also a Riemann
integrable function.
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Proof. Sincef = f, + f, we have thatf? = f2 +2 af, af, + f2. But, f, &, =0, soto
prove that f 2 is Riemann integrable we only need to prove thdt? and f > are both Riemann
integrable. We only exhibit the proof forf 2, the one forf 2 it is enough to replacef. with
I f, when appropriate; recall thatf, is non positive.

Sincef is Riemann integrable it is also bounded, so there M " (0,+# ) so that

0$f, $ M.
Let! " (0,+# ). Sincef. is also Riemann integrable, there are two piecewise constant
functionsg:[a,d % Randh:[a,j % R suchthath$ f, $ gand
! b | ! b ! b |
a 4aM a a 4aM

Note that x &% and x &%M are both piecewise constant function ora[ld, which minorizes
and majorizes, respectively, the functiori.. Hence, without loss of generality, we can assume
that 0 $ h andg$ M. Therefore,f? is minorized and majorized byh? and g?, respectively.
Sinceg and h are both piecewise constant)? and g2 are piecewise constant too. Consequently

— ! ! !

b " b b b
0$ 2! fZ$ (¢! b= [(g! h)&g+ h).
a _a_ a a

But, g+ h$ 2aM and 0% g! h, so

Ly Py oy by #

[(g! h)alg+ h)]$ 2aM (g! h)=2 av g! h $1!.

a a a a
Since,! " (0,+# ) is arbitrary, the upper and lower Riemann integrals of 2 coincide, this
ends the proof. O

12.2 Riemann integral and monotonic functions

Recall that a function is called monotonic if it is either increasing or decreasing all along the
interval where it is debned, that isf : [a,J % R is monotonic if one of the following holds:

¥ Forany x,y " [a,d with x <y we havef (x) $ f (y).
¥ For any x,y " [a,J with x <y we havef (y) $ f (x).
Theorem 12.4. Letf :[a, % R be a monotonic function, therf is Riemann integrable.

Proof. Note that since f is monotonic it is also bounded; eithef (a) $ f(x) $ f(b or
f(h$ f(x)$ f(a)forany x" [a,b. Let n" N\{ O} be bxed but arbitrary. We consider the
case thatf is increasing, the other is left as exercise for the reader. bat:= a+ %(b! a) for
any k" {0,...,n} and the partition P = {I,...,1,}, where

|1:[O,X1] and |k:(ng 1,Xk], "k {2,...,n}.

4
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For eachk ! {1,...,n} we have!(ly) = % and sincef is increasing we also have that for
any x ! Iy
(X)) ™ FO)" (%),

Therefore, the piecewise constant functiog : [a,d # R given by
g(x) = f(xk), wheneverx! Iy
mayjorizesf and the piecewise constant functiom : [a,J # R given by
h(x) = f (Xx 1), wheneverx ! Iy

minorizes it. Therefore,

In b b b b In

fxw )= h* £ " g= T(x)!(l)

k=1 a -2 a a k=1

From this we get that

b b In In
(8 1" (0uS 10w D00 o2 (108 100 )= 2o 2 () 8 1 (x0).

a _a k=1 k=1

But x, = band x, = a, from where we get that the right hand side is less than or equal

to %(f (b $ f(a)). Therefore, letting n # +% we get that the upper and lower Riemann

integrals off agree and the function is then Riemann integrable. O

12.3 Riemann integral and continuous functions

As we have claimed at the beginning, continuous functions are also Riemann integrable. This
is essentially due to the fact that continuous functions on bounded closed interval are bounded
and also uniformly continuous, that is,

&1 (0,+%), "#! (0,+%), &,y ! [a, B, xS y|<# =( [f(X)$f(y)l<".
Theorem 12.5. Letf :[a,d# R be a continuous function, therf is Riemann integrable.

Proof. Let"! (0,+%) and #! (0,+ %) given by the uniform continuity of f on [a, i associ-
ated with == b,'—a By the Archimedean property, there isn ! N such that %(b$ a) < # Let

Xk = a+ E(b$ a) forany k! {0,...,n} and the partition P = {l4,...,1,}, where
|l=[01xl] and Ikz(xk! llxk]l &k ! {2!)n}

Clearly, for eachk ! {1,...,n} we have!(ly) < # and so, for anyx,y ! | we must have

TS TWI< g o
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but since the maximum and minimum of the function are attained, because it is continuous
debned on a closed bounded interval, we also have:

!
b" a’

max{f (X) | x! L} " min{f(y)| y! I} <
Note that the piecewise constant functiorg : [a,ld # R given by

og(xX) = g :=max{f(x)| x! I}, wheneverx! Iy
mayjorizesf and the piecewise constant functiom : [a,d # R given by

h(x) = hg :=min{f (x) | x! I}, wheneverx! Iy

minorizes it. Therefore,

In b b b b In
h'(hy=h$ 18 8 g= a"(l)

k=1 a - a a k=1
From this we get that

fr % (g h)"(l).

a -2 k=1

#
But g« " he < gz and ., "(I) = b" a, so the right hand side is less thah, which is any

positive Real number. Consequently, the upper and lower Riemann integrals fofagree and
the function is then Riemann integrable. m

The fact that continuous functions are Riemann integrable provides an interesting property
known as theMean Value Theorem for integrals

Theorem 12.6. Letf :[a,d# R be a continuous function, then there ig ! [a, such that

b
f=fx)(b" a).

a

Proof. By Theorem 12.5we know thatf is Riemann integrable, and since it is bounded below
and above bym; and M¢ we have

b
m; 4b" a)$ f $ M ab" a).

a

$
Furthermore, sincem;,M; ! f([a,]) we have thaty = b,—la ;f I f([a,H). Hence, by the

Intermediate Value Theorem, there isx ! [a, such that f (x) = y, and so the conclusion
follows. o
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Riemann integrable functions

12.4 Exercises

1. Suppose thatf :[a, !

(&) Suppose thatf is non-negative all along
!

(12.1) 0"

If (12.1) holds, can we conclude that is
terexample.

(b) For any c # [a, B, if there are other Rie
andf,:[c,J! R such that

f(x) = f1(x),

Show that

$x # [a,d,

2. Letf :[a,f! Randg:[a !

(a) Prove the following formulas

(12.2) W fa"
#1o, 15 S

(12.3) max f, g "
| a a
b

(12.4) min{f,g} "
a

Hint: Use Exercis€la

and f(x)= fa(x),

R is Riemann integrable.

4,d. Show that
f.
a

non-negative? Prove this or give a coun-

mann integrable functions, : [a,c! R

$x # [c, 1,

R be two Riemann integrable functions ond, b.

(b) Give an example for each inequality2.2 - (12.4 where the equality doesnOt hold.

3. Prove Theorem12.1for the case!l < 0.

4. Prove Theorem12.2for the case migf,f5}.

5. Prove Theorem12.4for the casef is decreasing.

6. Letf :[a,d! R be a continuous function, P
|
) l w+ h
e, ]

) 4

rove that for anyxg# [a, b we have

= f (m).
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Week 13: Sequences of Riemann integrable
functions

We now turn into the study of sequence of Riemann integrable functions and we study some
criteria that allow us to interchange order in which integrals and limits are considered, that is,
we are concerned with the question of when, for an appropriate notion of limit of functions,
the following holds

b Py

(1) im  f,=  lim f,.

n! +" a a n! +

13.1 Notion of limit of functions

So far, we have studied two notions of convergence for functions, namely, poitwise and uniform
convergence. Recall that a sequence of functiofs,},-; dePned ond,H is said to converge
pointwise to another functionf :[a,f" R if

#x$[a,f, f,(x)" f(X)asn" +%,
and the sequence is said to converge uniformly foif
&,' f& " Oasn" +%.

We know that uniform convergence is a stronger notion than pointwise converge; the pbrst one
implies the second one, but no vice versa. It turns out that pointwise converge by itself is
too weak to allow () to hold (without further assumptions). For example, let{x,},-; be an
enumeration of the set of Rational numbers on [Q]; recall that this set is inPnite countable.
Consider then the sequence of functions given by

£,(x) = 1 ifxX${Xq...,%Xn}

. #x $ [0, 1].

0 otherwise 0.4

Clearly, the each function on the sequence is Riemann integrable. Furthermore, this sequence
of functions converges pointwise to

1 ifx$Q

f(x)= )
0 otherwise

#x $ [0, 1].

1
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But have seen that the latter is not even Riemann integral, let alonéd | makes any sense. We
will see later that if in addition of pointwise converge, the sequence satisbes further assumptions
and the limit function is also Riemann integrable, then () does hold.

The situation for uniform convergence is dilerent, and as a matter of fact it su"ces by
itself to as the following theorem shows. Note that in the theorem we are not assuming that
the functions are continuous; in that case the limiting function would be Riemann integrable
because the uniform limit of a sequence of continuous functions is continuous too.

Theorem 13.1. Let {f,};-; be a sequence of Riemann integrable functions that converges

uniformly to a function f : [a," R. Thenf is Riemann integrable and
Py by
lim fn= f.

[
n : a a

Proof. First of all, let us show that the sequence of Real numbers given by
I
Yn = fn

a

converges to a Real number. To see this we use the Cauchy criterion. Note that for any
n,p# N\{ 0} we have

fFrep(X)$ Frn(X) % &nep$ & and f(X)$ frip(X) % &n:p$ fn& , "x#[ab.
Hence
[Ynip B Yn| % &nip$ & a(b$ a).

Therefore, sincef, " f uniformly on [a,d, we have that{f,};_.; is a Cauchy sequence of
function and so, for any! # (0,+( ) there isN # N such that if n,p# N with N % n we have
!

b$ a’

&fn+p$ fr& %

This implies that {y,} -, is a Cauchy sequence of Real numbers, and thus, by the completeness
of R, it converges to somé. # R. On the other hand, note that

Fa(x)$&F$ F& %f(x) %f (x)+ &, $Ff& , 'x#[aH.

Let! # (0,+( ) be bxed from now on and taken # N such that
"I n

ns b n

1 " " !
S " N0
3408 3) and . fn$L /03.

&b f& %
Letg, :[a,0" Randh,:[a,d" R be two piecewise constant functions that majorizes
and minorizesf,, on [a, b, respectively, and such that

Db Co b Db |
% fa% hyt 2
LGP % Ty
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Note that x " g,(x) #$f,# f$ andx !" h,(x) #$f,# f$ are also piecewise constant,
and the prst one majorize$ and the second one minorizes it. Consequently we get

!b Ib b !b

ha#$Ta# TS Ab#a)% % f% g(X)+ $fn#1$ ab# a).

a a a a

Gathering together all the preceding estimates, we get

!b 24l !b l_b !b 24l
L#1 % fn#%% f% fo% fn(x)+%%L+!.

a a a a

But ! & (0,+" ) is arbitrary, so we Pnally get that the upper and lower Riemann integrals
of f agree with L, which is the limit of the Riemann integrals off,,, and so the function is
then Riemann integrable and its integral coincides with the limit of the integrals of,. m

13.2 Monotone convergence Theorem

In the introductory example we have exhibited shows that the mere pointwise convergence of
a sequence of Riemann integrable functions is not enough to interchange limit with integral,
that is, to get ((). The following result allows to do this change. It is worthy notice that the
theorem requires the limiting function to be Riemann integrable beforehand, and sbjs not
a criterion to determine whether the limiting function is Riemann integrable.

The theorem we review in this section is called th®lonotone Convergence Theorem
for Riemann Integrals.The proof of the theorem is based on a characterization of Riemann
integrability and the so-calledCousinOs Lemma. The latter reads as follows.

Lemma 13.1. Let [a, be a given bounded and closed interval and [a, " (0,+' ) be a
given positive function. Then, there exist a partitiorP = {I4,...,1n} andy; <...<y Real
numbers such thaty & I, and "(I¢) < 2r(yx) for eachk & {1,...,m}.

Proof. Let us consider the family of open intervalg Oy} y- a5 given by

Oy =(y#r(y),y+r(y), )yé&lan.

Clearly, this is an open covering of the intervald, ij, and so, by the Heine-Borel Theorem,
there areys,...,ym & [a, 1 such that {Oy, }{L, covers &, too. Without loss of generality we
assume thaty; <... <Yy m#1 <Ym and furthermore, we can also assume that no,, contains

other Oy,, provided that k = |. The latter means that

Vet # F(Yes1) <Yk + r(yx), )k&{1,...,m}.

Note that y; # r(y1) <a andb <y, + r(yn). Hence, by debPningko = a and x,, = b, we see
that taking any Xk & (Yk+1 # r(Ye+1), Yk + r(¥k)) + (Y, Yk+1) forany k & {1,...,m# 1} we get
the desired properties. O

Before going further, we introduce an useful criterion for a function to be Riemann inte-
grable, which is a version of the so-calleDarboux criterion  for Riemann integrability.

3
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Debnition 13.1. We say that a functionf : [a, ! R satisbes the Darboux property if for
any! " (0,+# ) there is"™ " (0,+# ) such that for any partition P = {J4,...,Jn} of [a,0
with mesh$P$ <" and any collection of pointsys,...,ym " [a,1 such thaty; " J; for any
j"{1,...,m} we have

ym # }
o T o%f(y;) aHJ;)n & L
j=1 Ji

1tOs worthy to notice that the Darboux property is sometimes taken as debnition for a
function to be Riemann integrable. This is because a functioh : [a, ! R is Riemann
integrable if and only if it satispes the Darboux criterion. We now prove the one of the
implication, the other is left as exercise for the reader.

Lemma 13.2. Any Riemann integrable functionf : [a,j! R satisPes the Darboux property.

Proof. Let! " (0,+# ), sincef is Riemann integrable, it is bounded%f $ " R) and there
are two piecewise constant functions : [a,j! Randg:[a,f! Rwith h & f & g such that

#p #p #p

g%-& f& h+ -
a 4 a a 4

Without loss of generality, we assume thah and g are piecewise constant relative to the same
partition Py = {I,...,1,} and that for eachi " { 1,...,n} we have O0< #(l;). Let
$ %

' HD, . Hl) O +# )

TEMIN AARTS + 1)

and take any partition P = {J4,...,Jn} of [a, such that $P$ <" . Letys,...,ym " [a,1
such thaty; " J; foranyj "{ 1,...,m} and consider the set of indexes

= {"{L...om} "i{L....n} 3 (I},

Note that for any j " ! we have
h(x) & f (y) & g(x), )x" J;.

Therefore, we obtain that # #

h&f(y)a4d)& g
Jj Jj
Hence, using thatf & g and that h & f, we get, respectively,

# # # # # #

f %f(y;) 84J;) & g% h and f(y))a#Jj)%n f & g% h.
Jj Jj Jj Jj Jj Jj
Moreover, since & g%h we obtain

& N T
g% h & g% h&-.
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Therefore ! it "

SRR O
jre 9
On the other hand, for eachy # !, we have that

# : ..
o f L f(yp)ad@int 2a$$ 4 "
Let us point out that !(J;) "$ P$<!(l;) foranyi #{1,...,n}. Consequently,J; is covered
by exactly two subintervals of the partition Py. This leads to state that the number of indexes
that donOt belong to ! is at mostn, and so the proof is complete because we have

G oo

no FUE(y)a)” >
TR

We are now in position to prove the Monotone Convergence Theorem.

Theorem 13.2. Let {f,},-; be a sequence of Riemann integrable functions that converges
pointwise to a functionf : [a,J % R. Suppose thatf is also Riemann integrable and that
{fn},=1 is monotonic, that is, one of the following holds

(13.1) & # [a, b, & # N\{ 0}, f,(x)" fni1(X).
(13.2) & # [a, 0, & # N\{ O}, fpii(X)" fr(x).
Then one has # #
lim fn=f
n#+" 4 a

Proof. Without loss of generality we can assume that = 0 and that each f, is nonnegative
and the sequence is decreasing; it is enough to chafigevith f ! f,, in the brst case and,,! f
in the second one. Here is important the fact that,, andf are both Riemann integrable. Also,
using the change of variableg '% ’g;g we might also assume that =0 and b= 1.

First of all we note that since 0" f,.1 " f, we have that

# 1
Yn, Wherey, = fh.
0

0" Ynu

Therefore, the sequence of Real numbefy,},-, converges to somé& # [0,+( ). Since we
are in the case =0, we must show thatL =0 to conclude.
Let " # (0,+( ), by the Darboux property, for any n # N\{ O} there is#, # (0,+( )

such that for any partition P = {l4,...,I,} of [0,1] with mesh$P$ < #,, and any collection
Y1, ..., ¥Ym # [0, 1] such thaty, # |« we have that

im o .
(13.3) v ot falyk) &) " T

k=1 'k
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Furthermore, we debne

N(x):=inf.n! N\{O}]| fn(x)" '5 ,  #x! [0,1].

By the CousinOs Lemma applied with{x) = %é‘,\. x) there exist a partitionP = {14,...,1n}
andy; <...<Yyp suchthatyc! Iy and #Ix) < "Ny, foranyk!'{ 1,...,m}. Taken! N
such that Ng := max{N(y1),...,N(ym)}" n. Hence

# gn # gn # o ¢
0" fo= fn" fne) = ()
0 k=1 Ik k=1 Ik =1 k1 J() 0

whereJ(j) = {k!'{ 1,...,m}| j = N(y)} foranyj !'{ 1,...,Ng}. Note that someJ(j)
can possibly be the empty set. Also, remark tha#{(l) <" for any k! J(j). Therefore, by
(13.3 and the dePbnition ofN (yx) we get

% 1

s 7 . , L, 8 1

) fn () (Yk) @1 ) + e éa& #Hlk) + 2—1-( :
. | . .
ktJ@) 'k k! J() k! J3(j)

This leads then to

# & '
1 | $o 8 1 !
0" f,= -4 & #)+ =" Za1+1)= 1.
0 2 _ 2 2
=1 kP aG)
Given that ! ! (0,+$ ) is arbitrary, the conclusion follows. m

13.3 Functionals and Integral equations

We have considered so far Real-valued functions dePned on subsef’,dhat is, functions of
the typef : 1 % R & R. In this section we introduce the idea of function of function, which
we might call functional to make a distinction with respect to Real-valued functions.

We begin by introducing some notation, let us denote b§([a, ) the set of all Real-valued
continuous functions debPned on the closed bounded interva) . We call a functional, denoted
generically by T : C([a,) & C([a, H), to any mapping debned orC([a, ) and whose value
is an element inC([a, 1), that is,

# ! C([a,H), '$! C([a,hd) suchthatT(f)= $.
The Riemann integral allows us to debne in several way a functional @{[a, ).

Example 13.1. Letf ! C([a,l), let us consider the functionalT : C([a,d) & C([a, D)
debned via #

T(F)(x) = Tt [a, 4.

a



Math 4031 - Spring 2016 Sequences and the Riemann integral

The function T(f) debnes a continuous function; as a matter of fact, Lipschitz continuous
function. Indeed, let us denoté = T(f), then

oy by "#X if v <
if y<x
LX) t(y)= f!  f= |V¢ny fx<y
) X

a a

"X,y # [a,b.

Sincef # C([a, ) then, |f| $% % and so
) T DISH % X!yl "Xy # [a b,
Example 13.2. Letf # C([a,d) andK :[a,fj & [a,d"' R be a function such that

1. (L # [0,+) ) such thatx * K (x,u) is Lipschitz continuous with constantL for any
u# [a, g (the same for anyu).

2. u* K(x,u) is Riemann integrable for anyx # [a, .

We consider the functional
!

b
T = (K(x gaf).

Note that eachT (f )(x) # R, this is due to the fact that for anyx # [a, J the mapu *' K (X, u)
is Riemann integrable, and theru * K (x,u) & (u) is also Riemann integrable, and so integral
if well debned. For sake of simplicity, let = T(f) and so

! ! !
Fx)! 1(2)= b(K(x,éélf)! b(K(z,aélf)= |D[(K(X,a! K(z,3) af ]

Remark that
(K(x,u)! K(y,u) & (y) $|K(x,u)! K(y,u)|a%% $ Lak! y|la%%

Therefore,
PX)! T(y)]$ LIx! y|a%% &b! a).

From where we actually get thax *' ! (x) is Lipschitz continuous on[a, H.

Since a functional is essentially a function between sets endowed with a norm, we can
also debne notions of continuity. For the scope of the exposition, the most important one is
Lipschitz continuity.

DePnition 13.2. We say that a functionalT : C([a,l) ' C([a, ) is Lipschitz continuous if
there isL # [0,+) ) such that

W(f)! T(9)% $La%! g%

7
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Example 13.3. Let us pick up the data from Examplé3.1 Let f,g ! C([a, ) be given, then
for any x ! [a,d Pxed but arbitrary we have

X X

| |
| | |
ITEO)" T@I=1 f"  g=1 ("9

a a a a

Given that|f (y) " o(y)|#$f " g$ foranyy! [a, x] we get
ITE)(X)" TOX)|#$f" gb a(x" a)#$f " g ab" a)
Since the right hand side doesnOt dependxgmwe can take supremum and get
ST(E)" T(9)$ # (b" )&% " g% .
Hence,f %& (f) is a Lipschitz continuous functional with Lipschitz constant = (b" a).

Example 13.4. Let F : R & R be a Lipschitz continuous function with Lipschitz constant
Le! (0,+" ) and lety,! R. We consider the functional dePned o€([a, ) given by

X

TEOX) =yo+  F(f, )E 1 C([a h).

a

Note that the Riemann integral ofF ( f is well-debPned because that function is continuous
thanks to the composition rule for continuous function. Therefore, we see that

In " | In | n
X X | X

| | X |
ITEO)" T@)I=1 F(f"  F(g=1 F(F"F(oi# IF(f" F(d

a a a a

The Lipschitz continuity of y %& (y), implies that
IFCEM ™ FOaWl=IF(EM) " FlaI# Leaf(y)" o)l # Lea$ " g% .
Consequently, we get that
ITE)X) " T(@X)|# (b" a)aL a3 " g&

So, the functionalf %& (f) is Lipschitz continuous with Lipschitz constant.r a(b" a).

13.3.1 Banach Fixed Point Theorem

Since we have introduced the notion of function among a set of functions, we can also introduce
the notion of functional equation, that is, an equation where the unknown is a function. For
example, we would like to bPnd at least & ! C([a, ) such that

(13.4) T(F) = f

for some functionalT : C([a, ) & C([a, ). Any function f ! C([a, 1) that satisbes (3.4 is
called abxed point of the functional T.
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Remark 13.1. The functional exhibited in Examplel3.4 plays a key role in the theory of
ordinary dilerential equations. Indeed, any solution to an ordinary dilerential equation

f'=F(f), f(@=yo

is by dePnition a function that satispes

|
X

f(X)=T>{E)X)=yo+ FIf, "x#][anHb.
a
Hence, the existence of solutions to an ordinary dilerential equation can be study by analyzing
the bPxed points of the functional .

Fixed point theorems are more di'cult for function debPned onC([a, i) than in R, because
for instance in the prst set there is no result playing the role of the Intermediate Value Theorem
in R; essentially because not every bounded sequence of continuous functions has a subsequence
that converges uniformly.

To Pnd bxed point of functional we need to use the completeness of the space of continuous
function. The following is one of the most classical result regarding Pxed points of functional.
It is worth noting that the following theorem provides more information about the Pxed point,
it says that it is unique.

Theorem 13.3. LetT : C([a,H) $ C([a, ) be a Lipschitz continuous functional and suppose
that its Lipschitz constantL belongs to(0, 1). Then, there is a unique bPxed point of , that is

%f # C([a,b), T(f)="f.
Proof. Let f, # C([a, ) be any function, and dePne inductively the sequence of functions
frer = T(fn), "n# N\{O}.
Then, for anyn # N\{ 0, 1} we have
&na ' fn& = &T(fn)' T(fre)& (La& ' frer& ( ...( LM&, f,&
Letany n,p# N\{ O}, then
& nip' Fn& ( n»p#l&fkﬂ "& ( nwp#lLk**‘l&fz' f1& = L"#lé% ad&,' f.&
k=n k=n
Thanks to the fact that L # (0,1) we have that

1" Lp
Ln#léﬁ$ 0 asn$ +)

and so, it is easy to see that the sequendé,}, -, is a Cauchy sequence, and it converges
uniformly to somef # C([a, ).
Let us see thatf is a bxed point ofT. Note that for any n # N\{ 0} we have

&T(F) & (&T(F)' TE.)& + &M (f,)' fo& + &,' f&

9
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Thus, using the Lipschitz continuity of T, the dePnition off,,; and the estimate founded
above, we get
IT(F)" fI, # (L+1)alf," f1, + LM Uf," £,

Letting n $ +% we Pnally obtain that! T(f)" f!, =0 and so, sinceT(f) and f are both
continuous, we conclude thafl (f) = f.

The only issue remaining is the uniqueness, which comes from the following observation:
If f & C([a,H) and g & C([a, ) are both bxed point ofT, then

1Fr g, = ITE)" T(g)!, # LIF" g,

But, sinceL & (0, 1) the only optionisthat!f " g!, =0 and sof = g, because both functions
are continuous on &, . H

13.4 Exercises

!
1. Consider the sequence of functios ,}!-; dePned on O,!Z via

#,9$
fn(x) =sin"(x), x& O,'Z .
Show that %,
n#!flrp! 0 fn:O

2. Let{f,},-; be asequence of nonnegative Riemann integrable functions afj. Suppose
that the function f : [a, $ R given below is well-debPned and Riemann integrable

&
f(x)= lim fr(x), "'x&[ab.
e
Prove that %, g %y & Yo
f = fk = lim fk
a k=1 2 M e a

3. Show that there is a unique continuous functior : [0,1]'$ R such that
(T
f(x)= x+ (K(x,§&f),
0

whereK (x,u) = exp(" (x + u+1)) for any x,u & [0, 1].

4. Let K :[0,1]) [0,1]'$ R be a continuous function so thaijK (x,u)| < 1"' x,u & [0, 1].
Prove that there is a unique continuous functiorf : [0,1]'$ R such that that satisbes
%,

f(x)+  (K(x, §af)=exp(x?.

0

10
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Week 14:. Special topics on Riemann
Integrability

We end the exposition about the Riemann integral studying some classes of functions for which
it is possible to compute their Riemann integral (in some sense) regardless the fact that they
may not be Riemann integrable in the sense we have adopted in this course.

14.1 p-Riemann integrable functions

Recall that if af : [a,d ! R is Riemann integrable, then|f| is also Riemann integrable.
Furthermore, since the product of Riemann integrable function is also Riemann integrable, we
can infer that for any p" N, the |f |’ is also Riemann integrable.

Debnition 14.1. Letp" Q# (0,+% ). We say that a functionf :[a,d! R is p-Riemann
integrable if |f |P is Riemann integrable and

P, #
%6 9% = f°P " R.

a

el

The value% % is called thep-norm of f .

As we have pointed out, any Riemann integrable function is alsp-Riemann integrable
if p" N; this fact is also true ifp" Q# (0,+3%$ ), but their proof is beyond the scope of
these notes. The converse is not true, there apeRiemann integrable functions that are not

Riemann integrable, for example
f(x) = 1 ffx Q#10,1]
&1 ifx" [0,1]\ Q

14.1.1 Properties of the p-norms

The role of the p-norms over set of Riemann integrable function can be compared with the
role of the absolute value and the sup-norm ovd® and C([a, i), respectively. There are some

properties in common for all the three, but others that are only characteristic of absolute value
and the sup-norm. For example, thg-norm of a Riemann integrable function can equal zero
but, the function not be the constant function zero. However, we know that

"'X" R, [X|=0 ( x=0 ) " f" C(aHb), %% =0 ( f(x)=0, 'x" [a,8.

1
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Recall that for any! ! R we have that
Ix+1ay|" [x|+]']ay] #x,y! R and $ +! &% "$f$ +|'|abgs #f,g! C(a,b).

This property means that absolute value and the sup-norm are sublinear ov& and
C([a, H), respectively. A similar inequality holds for thep-norm over the set of Riemann
integrable functions.

Theorem 14.1. Letp! N\{ O} and letf :[a, % R andg: [a,§ % R be Riemann integrable,
then forany! ! R, f + ! &g is p-Riemann integrable and

S + 1 &g$, "SSP+ |! | a$g$,.
The proof of the theorem is based on two preliminary inequalities.

Lemma 14.1 (YoungOs Inequality) Let p! N\{ 0,1} and setq = % Then, for any
a,b! [0,+& ) we have that

adb" = aa® + = ag.

Y q
Proof. First of all, if a = 0 or b = 0 then the inequality is trivial, so, let us assume that
a,b! (0,+&).
Recall that for anyp! Nandh ! (' 1,+&) we have the BernouilliOs inequality (see

equation (8.8)), that is,

1+péah" (1+ h)P.

I n

Let h = %é' a' 1. Since? ! (0,+&) we have that' & < h and so by the BernouilliOs
inequality we get that

a 1 1.8 1
—=(1+ pah)r" 1+h= -4+ -.
be (1+ pany p B q
The multiplying by B and using the fact thatq' g =1 we get the desired result. O

The other inequality we need is known as the HelderOs inequality.

Lemma 14.2 (HelderOs Inequality)Let p! N\{ 0,1} and setq= p—pl Letf :[a,d % R be
p-Riemann integrable and andy : [a,] % R be g-Riemann integrable. Iff ag is 1-Riemann
integrable then

$f 4g%, " $ T $, 4%0%,

Proof. Note that if $f $, = 0, then |f | = O except at a Pnite number of points ond, b, and
sof ag = 0 except at a Pnite number of points ond,ld. Hence$f ag$, = 0 and so the
conclusion would follow. A similar remark holds for the cas$g$, = 0. Therefore, without
loss of generality, we assume thaf $,, $g%, ! (0,+& ).

Let x ! [a,d be bxed but arbitrary and set

If (x)] _ 93]
3, and b= $0%,

a=
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By the YoungQs inequality we obtain

If (x)|apx)| . }élf CIP }éllgl(x)lq
Ifl,algy, p !flp g 'g3°

Sincex # [a, [ is arbitrary, by integrating the last inequality we that
[ |

If &g 1 "b 1 b 1 1
a,gl " _ pé |f|p+ —— 4 glq:—+—=1.
Ifl gy paflpy 4 galg'q . P q
From where the conclusion follows. O

Remark 14.1. The HelderOs inequality is also true for the cgse 1, but in this case! g! qls
replace with,!g!, . This is a direct consequence of the fact that

It (x) ag(x)[ " [F(x)lalgt, .
We are now in position to prove Theoreni4.1

Proof of Theorem14.1 Sincef andgare Riemann integrable, so they ark+! gand|f +! &|.
In particular, for any k # {2,...,p}, the function |f + ! ag|* is Riemann integrable.

Note that (p$ 1)& = p, thus |f +! &I ! is Riemann integrable, and so it is alsg-Riemann
integrable. By the HelderOs inequality, single|af + ! &g|” ! and|g|af + ! &|”" * are Riemann
integrable and nonnegative, we get that
Lf|af +1 &gl My"1 f1,af +1 4gls and !|glaf +! &g Yyl gl alf + 1 agla.
Now, since

If(x)+ ! ag(x)P " (If (x)+ ['[apeOD &f () + 1 &geOl”™ &, 9% # [a, b,
integrating this inequality and using the prst inequality we get that
If o+ L aglR" (VFl,+ |1 [&lglp) & f + ! agle).

Using Pnally the fact thatp $ g = 1 the proof is complete. O

For a given Riemann integrable function, the value gf-norm times a given factor (depend-
ing only on p and [a, ) increases withp, eventually reaching the sup-norm of .

Theorem 14.2. Letf :[a, & R be Riemann integrable, then
11, (b$ @)% af!," (b$ &) m afl,," (b$a)af!, , Y%, h#N\{0}.
Furthermore, if f is continuous, then

im 1fl. = 1f1, .
pJ,g”P! fly, =111,

3
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Proof. For the brst inequality, we use the HelderOs inequality witifx) = 1 for any x ! [a, H.
Furthermore, note that"f "5 = "f P";, hence using the HelderOs inequalfty and g as before
the second inequality follows. The last inequality is simply a consequence of the debnition of
the sup-norm. |

On the other hand, for anyp! N\{ 0} let us setx, = (b# a)% a'f",. By the preceding
part, the sequence generated by this numbers is increasing and bounded abovesbya d'f ", .
Therefore,{x,} i):l converges to somé ! R, and furthermore,L $ (b# a) &"'f", . Note that

{(b# a)p!Tl}!p=l converges to b# a) asp % +& . So, the sequence generated by

Ilf n — 1 éx
P S 1 Mp
(b# a)"F
also converges, and its limit is less than or equal tof ", . Note that up to this point we
havenOt used the fact that is continuous.
Now, sincef is assume to be continuous o[ there is)a! [a, b such that"f", = |f (®)].

Furthermore, by continuity of |f |, forany! ! (0,"f", ) and there is" ! (0,+ & ) such that
o$"f" #I1 <|f(xX)], '"x! (w# ", @+ ")( [ab.

Letl =(ax# ", @+ ") ( [a, B and note that#1) ! (0,+& ). Then,
|

(1 #PES P$"frh.
|

This yields then to ("f", #!) é#(l)% $"f"p. So, lettingp % +& we get that (| )% % 1,
from where we obtain

fry#DS lim tfry
p* +!

and the conclusion follows becaude! (0,"f", ) is arbitrary and positive. O

Remark 14.2. The assumption thatf is continuous on Theoreml4.2 is important, otherwise
the limit, which always exists, can be strictly less thdrf ", . For instance, consider

0 ifx! [0,1)) (2]

f(x) =
(x) 1 ifx=1

Clearly, "f", =0 forany p! N\{ O} but"f", =1.

14.2 Improper integrals

Recall that to debPne the Riemann integral we have restrict ourselves bmunded functions
debned orclosed and bounded intervals.

We now show that is it possible to extend the notion of Riemann integral to functions that
donOt satisfy some of the boundedness assumptions described above.

4
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Before going further, let us debne the lateral limit of a function. Let ! (0,+" ) and
consider a functionF : (0,r) # R. We say thatL ! R is the limit from above of F at O if

$1O,+"), %! (O,r), h! R, O<h< " & |F(h)" L|<!.
In this case we denote the limit from above by
hlllrro1+ F (h)

Debnition 14.2. Leta,b! Rwitha<b,andf :(a,b # R be a given function. We say that
f is integrable if:

¥ forany h! (0, %) f is Riemann integrable ona+ h,b" h].

¥ the following limit exists |
©bh

lim f
h! O+ a+h
Under these circumstances we say that the improper integral converges and we denote its value
in the same way as the Riemann integral, that is,
! b ! b' h
f = lim f
a ht 0" a+n
We now evoke some results concerning previous calculus courses:
Let#! Q( (0,+" ) and considerf, (x) = =~ debned on (01). We know that for any

h! (0,%) we have

' pon #In(1" §)" In(h) g T#H=1
fr = $ ! 1 o1 otherwise
" 1" # (1" h)'"t h"1

Sinceh'"'# Oifandonly if #! (1,+" )and 1 # Oifandonly if #! (0,1). We get that
the improper integral off, converges if and only if# ! (0,1). In any other case, the limit
doesnOt exist.

Let us now present a criterion for the convergence of improper integrals.

Theorem 14.3. Letf :(a,D# Randg:(a,b# R be two given functions, such that
¥ forany h! (0O, %) f and g are Riemann integrable orfa+ h,b' h].
¥ there isr ! (0,b"' a) for which0) f(x)) g(x) foranyx! (a,a+r)* (b' rDb).
If the improper integral of g converges, then so does the improper integral fof

Proof. Note that, thanks to the Prst assumption, for anyh ! (0, r) we have that
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Let F;:(0,r)! RandF,:(0,r)! R be given by

! atr ! b h

Fu(h) = f and Fy(h)= f, "h#(0,r).

a+h bl r

The fact that f is non negative on &, a+ r)$ (b%r, b) implies that both functions are decreasing.
Similarly, we debPneG; : (0,r) ! RandG,:(0,r)! Rvia

! atr ! b h

Gl(h)=. g and Gyh)= g, "h#(O,r).

a+h b r

This function are as well decreasing and by the second assumption we have tha& G; and
F, & G, on (a,a+ r)$ (b%r, b). Moreover, since the improper integral 0§ converges we have
that the limit from above of G; and G, at O exist, this leads then to

Fih) & Gy(h) & lim Gu(h) and Fa(h) & Go(h) & lim Go(h),  “"h# (O,).

Hence, sufpFi(h) | h # (0,r)} and sudF,(h) | h # (0,r)} are well debPned Real numbers.
Combining this with the fact that F; and F, are decreasing functions, we get that
lim Fy(h) =sup{Fa(h) [h# (0,1)} and  lim Fo(h) =sup{Fe(h) [N # (0,1},  "h# (0.r).

]

14.3 Exercises

1. Consider the sequence of continuous functiof$,}?_, given by

x" if x #[0,1]

BOO= ks w2

Prove that {f,}?_; satisPes the Cauchy criterion for the 1-norm, that is,

"L# 0,4+ ), (N#NV{O}, "np#N, N&nN =) * fro,%f* &!.
Does{f,}#-; converges uniformly to some continuous function? Determine whether or
not the set of continuous function is complete if we replaced*; with * a*;.

Hint:  Show that o, L

! 1 "
. [fnep %fa| & . fn= 1 n,p#N

2. Consider the sequence of continuous functiod$,}#_, dePned via

1%nx ifO&x& 3

fn(x) =
0= ifl<x &1

Show that the sequence of Real numbefsf,*,}%_, converge to 0. What about the
sequence$*f . *1}#_, and {*f,*4 }#_, ? Do they converges to to 0?

6



Math 4031 - Spring 2016 Special topics

3. Let {f,}}-,; be asequence of Riemann integrable functions eyl and letf : [a,j! R
be another Riemann integrable function. Suppose that for songe” N\{ 0} we have
that

#H,$f#H! 0 asn! +%.

Prove that for any k " {1,...,p} we have that#f,$ f#! Oasn! +%.

4. Suppose thatf : (a,b ! R is uniformly continuous on @,b. Prove that its improper
integral converges.

5.Letf :(a,bH! Randg:(a,b! R be two given non negative functions, such that
¥ forany h" (0,22), f and g are Riemann integrable ond+ h,b$ h].
¥ the following limits from above exists and are positive Real number

. f(a+h) f(b$ h)
hlﬁlfrg’f g(a+ h) and O g(b$ h)

Prove that the improper integral off converges if and only if the improper integral of
does it too.

Hint: Use Theoreml14.3
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