
Math 4031 - Advanced Calculus I
Instructor: Dr. Cristopher HERMOSILLA

Louisiana State University - Spring 2016

Week 1: Basic elements of Logic

The set of real numbers is the base of the Calculus. In these notes we will study the real
numbers from an axiomatic point of view, that is, using some prescribed rules, calledaxioms,
we will deduce several properties of the real numbers. To do so, one essential tool we require
is the Mathematical logic, which will allow us to understand how a proof of a theorem works.
Next week we will review another important tool,Set theory.

1.1 Statements and Truth values

The basic object in logic is calledstatement , which is a verbal assertions characterized by
the fact that it has a unique truth value, that is, either true (T) or false (F). Statements are
usually denoted by the lettersp, q or r with or without subscripts.

Example 1.1. We can usep to denote the statement ÓParis is in FranceÓ andq for the
statement ÓLondon is in ItalyÓ. In this example,p is true and q is false.

Since each statement has a unique truth value, we can associate one with another statement
that has the opposite truth value. This is called thenegation of the statement and it is denoted
by p. This statement can be read asit is false that . . . or simply not p. The truth value of the
negation of a statement is described by the following table

p p
T F
F T

Example 1.2. The negation of ÓParis is in FranceÓ can be written as ÓIt is false that Paris
is in FranceÓ and, since the original statement is true, this negation is false.

As may seem clear, the negation of the negation of a proposition has the same truth value
as the proposition itself. To formally express this idea, we need to deÞne Þrst what we mean
by claiming that two statements are the same. We say that two statements,p and q, are
equivalent if they have the same truth values. In this case we write

p () q.

Note that the equivalence of two statements is a statement too, it can be either true or false.
Furthermore, the truth table that deÞnes this relation is given by
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p q p () q
T T T
T F F
F T F
F F T

In particular, we can check the following equivalence

p () p.(1.1)

Algebra of propositions

Simple statements can be used to create composite statements, which will be calledproposi-
tion . The fundamental property of a composite statement is that its truth value is completely
determined by the truth value of the statements that compose it and the connectors used to
create it. As we will see later, theorems, lemmas and corollary are examples of proposition
whose truth value is true.

Example 1.3. Let us consider the composite statement ÓParis is in France and London is in
ItalyÓ. We understand that this statement is false, and it will continue being false as long as
the false statement ÓLondon is in ItalyÓ is part of the composite statement.

In the preceding example we have used the verbal connectorand to create aconjunction
of two statements. Symbolically, the conjunction of two statementsp and q is denoted by

p^ q

and its truth value is the true if and only if both statements are true as well. This property is
summarized in the next table

p q p^ q
T T T
T F F
F T F
F F F

On the other hand, if in the example above we would have used the verbal connectoror
instead of and, the truth value of the statement would have been true. Furthermore, the
truth value of ÓParis is in France or London is in ItalyÓ is true and it is not going to change
if we replace the statement ÓLondon is in ItalyÓ by any other statement (true or false). A
proposition made with the connectoror is called adisjunction and is it denoted by

p_ q.

The truth values of a disjunction are summarized in the following table
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p q p_ q
T T T
T F T
F T T
F F F

Remark 1.1. Let us point out that in conjunctions and disjunctions the order in which the
statementsp and q appear is not relevant, that is,

p^ q() q^ p and p_ q() q_ p.

We can see this fact directly from the truth tables. In this case, we say that these connectors
are commutative .

It is not di ! cult to see from the last two truth tables that conjunctions and disjunctions
are related by means of the negation operation (the negation of one provides a statement that
looks like the other one). These relations are known as theDe MorganÕs laws and read as
follows

p_ q() p^ q and p^ q() p_ q.(1.2)

The proof of the Þrst De MorganÕs law follows from the next truth table (the other De
MorganÕs law can be proved in similar way and it is left as exercise for the reader).

p q p_ q p q p^ q
T T F F F F
T F F F T F
F T F T F F
F F T T T T

For the purposes of this course, the most important propositions are theconditionals
or implications , which are of the form if p then q. This kind of statements allows us to
decide whether a deduction is correct or not. This is essentially the nature of any theorem in
mathematics, assume that a statementp is true, and then deduce after a sequence of logical
steps, that another statementq, is also true. Symbolically, the implication is denoted by

p =) q

and it is deÞned by the truth table

p q p =) q
T T T
T F F
F T T
F F T
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As mentioned above, a theorem (or lemma or corollary), corresponds to the Þrst line in the
truth table. In other words, when the hypothesisp is satisÞed (the statementp is true), an
implication is true if and only if the consequenceq is true as well; if the hypothesis is false, the
implication is true regardless the truth value of the consequenceq.

There is an alternative way to deÞne a logical implication. If we look at its truth table, we
can see that it has only one case when it can be false, same as the the disjunction. It turns
out that the logical implication is equivalent to the following disjunction

p_ q.(1.3)

To see this, it is enough to check its truth table, which is

p q p p_ q
T T F T
T F F F
F T T T
F F T T

Tautologies and proofs

The implication and the equivalence can be compared through the following proposition that
is always true (we leave the proof of this as exercise for the reader)

(p =) q) ^ (q =) p) () (p () q).

A proposition that is always true is called atautology .
Tautologies provides a way to write a particular statement in several di" erent ways. This

is very useful when trying to prove a theorem. Indeed, proving directly thatp =) q is true
can be very hard and we might need to explore other strategies to do it.

Proofs by contradiction

A proof by contradiction consists in assuming that the hypothesisp is true and that the
negation of the consequenceq is true as well, and then reach another consequencer that is
false. The underlying idea behind this kind of proofs is to show that the statement

p^ q

cannot be true. The logical explanation for this fact is based on the following tautology

p =) q() p^ q.(1.4)

This tautology can be proved with truth tables, but we are now going to show an alternative
way to do it, using a sequence of equivalences that we have already presented. The proof of
the tautology (1.4) is as follows:

p =) q() p_ q (alternative deÞnition of an implication (1.3))

() p^ q (De MorganÕs law (1.2))

() p^ q (negation of a negation (1.1))
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Proof by contraposition

The contrapositive of an implicationp =) q is the following proposition

q =) p.

As we will see shortly, the truth values of the contrapositive and the implication are the
same, and so they are equivalent as statements. Hence, a proof by contraposition consists in
assuming that the negation of the consequenceq is true and then prove that the negation of
the hypothesis is also true.

To show that the implication is equivalent to its contrapositive we follow the next steps

p =) q() p_ q (alternative deÞnition of an implication (1.3))

() q_ p (Commutativity of the connector or, Remark 1.1)

() q_ p (negation of a negation (1.1))

() q =) p (alternative deÞnition of an implication (1.3))

1.2 QuantiÞers

There are several situations in mathematics where the truth value of a statement depends on
some variables. For example, the equationx + 1 = 0 is true if and only if x = �1, and in any
other situation, the equation if false.

We deÞne apropositional function p(x) as an undetermined statement that assumes a
truth value whenever the variablex is Þxed. The variablex might be understood as a generic
parameter that belong to some collection of options.

Example 1.4. Let us consider the propositional function p(x) given by Óx is in FranceÓ. The
truth value of p(x) depends onx and also on the collection wherex is assumed to belong.
Indeed, if we suppose thatx is part of the collection of all national capitals, we have thatp(x)
is true if and only if x is ÓParisÓ, otherwise, it is false. However, if assume thatx belongs to
the collection of all continental french cities,p(x) is always true.

The usual way in which propositional functions are turned into statements is by means of
quantiÞers. On the one hand, in the Þrst case in our example, the propositional function is
turned into a true statement if before the propositional function we writethere exists at least
one national capitalsx such that. . .. In mathematical terms, it is written as

9x, p(x).

The symbol9 is called theexistential quantiÞer and it is use to say a propositional function
p(x) is true for at least one elementx.

On the other hand, in the second case in our example, by writingfor each continental
french cities x . . . we turn the propositional function into a true statement. Symbolically, we
write this as

8x, p(x).

The symbol8 is called theuniversal quantiÞer and it is use to express that a propositional
function p(x) is true for any possible choice we can make forx.
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Remark 1.2. When proving a proposition that includes the universal quantiÞer, we need to be
careful and prove it for a genericx. It is a common mistake to prove that a statementp(x) is
true only for some instances (or even for only one!). The universal quantiÞer makes reference
to any possiblex, and thus, it needs to be proved for any arbitrary case (not for a particular
one).

A statement written with the universal quantiÞer is false if we can Þnd at least one element
x0 for which p(x0) is false. If such element exists, it is usually called acounterexample .
Following this reasoning, we can Þnd a way to compute the negation of the universal quantiÞer.
Indeed, we have that8x, p(x) is false, this means that for somex, p(x) must be true. In other
words, we have

8x, p(x) () 9x, p(x)(1.5)

In a similar way, we have

9x, p(x) () 8x, p(x).(1.6)

Notice that we can prove the equivalence (1.6), by taking the negation in (1.5) and replacing
p(x) by p(x) when appropriate.

We Þnish by reviewing a last quantiÞer that is a composition of the universal and existential
quantiÞer. We introduce theuniqueness quantiÞer , denoted by9! to indicate that there is
one and only onex for which a propositional functionp(x) is true. In mathematical terms, we
write

9!x, p(x)

for the statement that is equivalent to

(9x, p(x)) ^ (8x, 8y, [(p(x) ^ p(y)) =) x = y]).

In mathematics, when we want to prove that a statement9!x, p(x) is true, we Þrst prove the
existence and then the uniqueness. Moreover, note that the negation of a uniqueness statement
consists in two parts, either there is nox such that p(x) is true or there are more than one
instances for whichp(x) is true. Formally, we have

9!x, p(x) () (8x, p(x)) _ (9x, 9y, [(p(x) ^ p(y)) ^ x 6= y]).

This tautology can be proved using the De MorganÕs law (we leave it as exercise for the reader).

1.3 Exercises

1. Show using truth tables that theand and or connectors areassociative with respect to
each other, that is, for any statementsp, q and r we have

(a) p^ (q^ r ) () (p^ q) ^ r

(b) p_ (q_ r ) () (p_ q) _ r
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2. Show using truth tables that theand and or connectors aredistributive with respect
to each other, that is, for any statementsp, q and r we have

(a) p^ (q_ r ) () (p^ q) _ (p^ r )

(b) p_ (q^ r ) () (p_ q) ^ (p_ r )

3. Show that (p () q) () ([p^ q] _ [p^ q]) is a tautology.

4. Show without using truth tables that the next proposition is a tautology

[(p =) q) ^ (r _ q) ^ r ] =) p.

5. Determine the truth value of the statementsp, q, r and s by knowing that the following
proposition is true:

[s =) (r _ r )] =) [p =) q^ s^ r ].

6. Prove that if 9x, p(x) =) 8x, p(x) is true, then p(x) is either true or false, regardless
the value ofx.

7. Let p(x) and q(x) be two propositional functions. Prove that if

(9!x, p(x)) ^ (9!x, q(x))

is true, then the following proposition is also true

(9x, p(x) ^ q(x)) =) (9!x, p(x) ^ q(x)).
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Week 2: Basic elements of Set theory

As we mentioned last week, we need to review some mathematical tools in order to provide
a self-contained exposition for the rest of the course. We have already studied basic notions
of Logic, we now turn our attention into Set theory. This theory will allow us to set up the
notion of set and also the symbolic language we are going to use along the course.

2.1 Basic deÞnitions

The intuition tells us that a set is a collection of elements of some kind. For example, the set

D = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

is a collection of symbols that we call digits. The setD is completely characterized by its
elements, and so, we can determine the truth value of the propositional function

p(x) !" x is an element ofD.

Actually, the set D, can also be though as the collection of number that makesp(x) true. In
general, if we denote byA the set to be deÞned, the statement that describe the elements of
the set A is written as

x # A.

This is read asx belongs toA, and if its truth value is true, we implicitly understand that x
is an element ofA. The negation ofx # A, that is, x # A is read asx doesnÕt belong toA and
is denoted by

x /# A.

In practice, when we writex # A or x /# A we are assuming that the corresponding statement
is true. Therefore, a setA is the collection of all the elementsx such that the statementx # A
is true, and we say that we know the setA if we can determine all the elements that make the
statement x # A true.

Remark 2.1. Note that the deÞnition of set that we have adopted doesnÕt take into account
the order of the elements nor if an element has been written more than once. This means that,
for us, the following are equivalent descriptions of the same set:

{ 0, 1} , { 1, 0} or { 0, 1, 0} .
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The usual way in which sets are denoted is through capital letters such asA, B or C (with
or without subscripts), and sometimes, to denote especial sets, we use more sophisticated
letters such asN, Z, Q or R.

Remark 2.2. At Þrst glance, we might think that any deÞnable proposition such as

x ! A "# p(x)

is enough to deÞne a setA. This is not correct and a classical counterexample is the so-called
RussellÕs paradox. In simple words, this paradox considers the collection of setsx that donÕt
belong to the themselves, that is,

x ! R "# x /! x.

If the collection R is assumed to be a set, this readily leads to

R ! R "# R /! R,

which contradicts the very deÞnition ofR. In order to avoid this kind of paradox, mathe-
maticians needed to introduce some rules to operate with sets, which are called theZermelo-
Fraenkel axioms ; the underlying idea is that sets must be constructed in some way from
previously constructed sets. We shall not discuss the Zermelo-Fraenkel Theory in details, but
will mention it sometimes along these notes. The curious reader is referred to [1] for a concise
exposition on the subject, or to [2, Chapter 7] for a shorter presentation.

2.1.1 Some important sets

In these notes we are going to accept that the real, natural and integer numbers are sets,
which we denote byR, N and Z, respectively; a rigorous proof of this fact goes far beyond the
scope of this course. We may assume that 0! N, and so we can construct the set of rational
numbers, denoted byQ, as

Q = { x ! R | $n ! Z, $m ! Z, m %= 0 & mx = n} .

Remark 2.3. Let us point out that we have deÞned the rational number using the following
scheme

x ! Q "# [x ! R & p(x)].

Note that this di! ers from the way how the RussellÕs paradox has been stated. The essential
point here is thatQ is constructed as a subcollection of the set of real numbers and the RussellÕs
paradox is done as a subcollection of some Óuniversal setÓ. We will see shortly that the notion
of Óset of all setsÓ is not suitable for a consistent mathematical theory.

We deÞne theempty set as the set that contains no element at all. This set is denoted
by ' and it admits several alternative deÞnitions, although it is existence is accepted within
the Zermelo-Fraenkel axioms. I f a set has at least an element, we say that it isnonempty .
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2.1.2 Inclusion and equality of sets

Together with the notion of set comes that one of subset, which intuitively is a collection of
elements that belong to the initial set and that satisfy some further properties; see for example
the discussion in Remark2.3. Formally, we say that a setA is a subset ofB , we write A ! B ,
if and only if the next proposition is true

" x, (x # A =$ x # B).(2.1)

Example 2.1. Let D be the set of digits, and let A be the set of even digits, that is, { 0, 2, 4, 6, 8} .
We see that whenever the statement x # A is true, we also have that x # D is true, and thus,
the proposition (2.1) is also true (for D in place of B ).

In what follows, when we writeA ! B we are implicitly assuming that the statement (2.1)
is true. Moreover, with a slight abuse of notation, we may useA ! B equivalently as (2.1).

There are two situations to be considered. EitherA is strictly included in B or, A and B
have the same elements (they are equal). In the Þrst case we writeA ! B to indicate that

A ! B % [&x, (x # B %x /# A)].

We say in this case thatA is a proper subset of B .

Remark 2.4. We always have that ' is a proper subset of any nonempty set A. This fact
comes from the very definition. Indeed, the statement

x # ' =$ x # A

is always true, regardless A, because the statement x # ' is always false.

On the second case, we writeA = B to indicate that A and B are equal , that is, that the
following proposition is true

" x, [(x # A =$ x # B) % (x # B =$ x # A)].

Furthermore, from the deÞnition of the inclusion we have the following characterization of
the equality of set

A = B ($ [(A ! B) %(B ! A)].(2.2)

Remark 2.5. The characterization (2.2) will play a fundamental role in the upcoming discus-
sion. Indeed, this shows that to prove that two sets are the same, we need to prove that each
one of them is a subset of the other. This is very similar to the fact that to prove p ($ q, we
prove p =$ q and q =$ p separately.

Power set

Given a setA, we call thepower set of A, written as P(A), to the collection of all the subsets
of A, including the empty set. In this notes we assume that the power set is actually a set
(this is one of the Zermelo-Fraenkel axioms).
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Example 2.2. Let A = { 0, 1, 2} , then its power set is

P(A) = { ! , { 0} , { 1} , { 2} , { 0, 1} , { 0, 2} , { 1, 2} , { 0, 1, 2}} .

In the preceding example, since we can list all the elements ofA, it is not di�cult to provide
an explicit expression ofP(A). In other situations this is not possible and we might need to
Þnd alternative ways to do it. This is the case ofP(N), the power set of the natural numbers.
It is not possible to write down each of the elements ofP(N). For the moment, we just relay
on the formal deÞnition to describe it, but we will show one way to express it later on.

2.1.3 Cardinality

We say that a setA is Þnite if it has a Þnite number of di↵erent elements. This means that
we can count the elements ofA Þnishing at some point. Furthermore, we can associateA with
a natural number, called thecardinality of A, that corresponds to the number of (di↵erent)
elements ofA. We denote the cardinality of a Þnite setA by |A|.

Note that in Example 2.2 the set A has 3 elements andP(A) has 23 = 8. This is because,
A has a single subset with 0 elements (the empty set), 3 subsets with 1 element, 3 subsets
having 2 elements and a single subset having 3 elements (the same set). This remark is not a
coincidence and it is a general fact.

Theorem 2.1. If A is a Þnite set, then|P(A)| = 2 |A|.

Proof. Let n " N be the natural number that represents|A|. Let us Þrst answer the question
of how many subsets ofA having k elements we can Þnd. We claim that the answer is

✓
n
k

◆
=

n!
k!(n # k)!

(2.3)

Note that there is a single subset ofA that contains k = 0 and k = n, respectively. These are
the empty set and the whole setA. Clearly, the claim holds in these cases.

On the other hand, suppose that we can assign an order to the elements of any subset of
A that has k elements. For the Þrst position we haven options, but for the second one we
only haven # 1 options (one then # 1 elements remaining). We can continue the process and
see that for the third position we only haven # 2 options and so on. We end up having only
n # k + 1 option for the k-th position. If we count all the possible combinations, we get

n(n # 1)(n # 2) . . . (n # k + 1) =
n!

(n # k)!

possible subsets ofA considering the order we have described above. However, subsets donÕt
take into account the order of their elements; see Remark

Finally, the number of all possible subsets ofA is
✓

n
0

◆
+

✓
n
1

◆
+ . . . +

✓
n
k

◆
+ . . . +

✓
n

n # 1

◆
+

✓
n
n

◆
=

nX

k=0

✓
n
k

◆
= (1 + 1) n = 2n,

where we have use the so-called binomial theorem.
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If a set is not Þnite, we say that it isinÞnite . Let us point out that the natural, integer,
rational and real numbers are all examples of inÞnite sets. However, the kind of inÞnite that
each of them represents is slightly di! erent. The natural, integer and rational are examples
countable sets. The idea of countability refers to the fact that we can count the elements of
N, Z or Q even though we will never Þnish doing so. It might seem counterintuitive, but it
can be proved that the ÓnumberÓ of elements ofN, Z and Q, which is also called cardinality, is
the same for all these sets. The cardinality ofN is denoted by the symbol! 0, which of course,
is not a number in the usual sense.

This topic (as well as a proper deÞnition of the phrasehaving the same cardinality) requires
further developments. We will stop the discussion shortly and resume it later on the course.
But, in order to motivate the readerÕs curiosity we make the following remark.

Remark 2.6. When A is a Þnite set, Theorem2.1 is implicitly saying that P(A) has more
elements thanA. This fact is also true when dealing with inÞnite sets and it is called the
CantorÕs Theorem . This result has two important consequences:

a) It can be proved that the cardinality of real numbers is the same as the cardinality ofP(N);
we will prove this later on the course. Hence, the cardinality ofR is strictly bigger than
! 0, which yields to the idea that some inÞnities are bigger than others. Consequently,
the set of real numbers is said to beuncountable .

b) CantorÕs Theorem rules out the existence of a Óset of all setsÓ. Indeed, if such set exists,
then its power set must have more elements than the Óuniversal setÓ and so there is at
least a set that doesnÕt belong to the Óset of all setsÓ. This contradicts the deÞnition of
the Óuniversal setÓ, and so, a Óset of all setsÓ canÕt exist in our setting.

2.2 Basic set operations

In what follows, we assume thatA and B are subsets of a given reference setX ; the set X is
sometimes called theuniversal set and it is supposed to be understood from the context one
is working in; note that this notion di! ers from the idea of Óset of all setsÓ.

We deÞne thedi ! erence betweenA and B, written as A \ B , as the set that contains all
the elements ofA that are not in B . Formally,

x " A \ B #$ [(x " A) %(x /" B)].

Example 2.3. Let D be the set of digits, andE the set of even digits. ThenD \ E is the set
of odd digits, that is,

D \ E = { 1, 3, 5, 7, 9} .

When X plays the role ofA, the set X \ B is called thecomplement of B (with respect
to the universal setX ), and it is denoted byB c.

Example 2.4. When taking the complement of a set, it is important to understand who is
acting as the universal setX . For instance, in Example2.3 if we takeD as X , we have that
the complement ofE, the set of even digits, is the set of odd digits. However, ifX is taken as
N, then E c includes the set of odd digits as well as other natural numbers.
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Recall that the contrapositive is equivalent to the original statement. Hence by the deÞni-
tion of the inclusion we have

A ! B "# [$x, (x /%B) =# (x /%A)].

Now, by the deÞnition of the complement, we get the following identity:

A ! B "# B c ! Ac.

We deÞne theunion of A and B, as the set that joins all the elements ofA and B.
Symbolically, we writeA & B and its deÞnition is

x %A & B "# [(x %A) ' (x %B)].

Some essential properties of the union are listed below

1. A & A = A: this is clear from the deÞnition.

2. A ! A & B: this follows from the tautology

x %A =# (x %A ' x %B).

3. If A ! C and B ! C, then A & B ! C: to prove this we follow the next logical steps:

A & B ! C "# $ x, (x %A ' x %B) =# x %C

"# $ x, (x %A ' x %B) ' x %C

"# $ x, (x /%A ( x /%B) ' x %C

"# $ x, (x /%A ' x %C) ( (x /%B ' x %C)

"# $ x, (x %A ' x %C) ( (x %B ' x %C)

"# $ x, (x %A =# x %C) ( (x %B =# x %C)

"# A ! C ( B ! C

4. A & Ac = X : sinceA ! X and Ac ! X , by property 3 we getA & Ac ! X . Therefore,
to prove the equality we only need to prove thatX ! A & Ac, but this is a consequence
of the following tautology:

x %X =# (x %A ' x /%A).

5. If A ! B and C %P(X ), then A & C ! B & C: by property 2, we haveA ! B ! B & C
and C ! B & C. Then the result follows from property3.

6. A & ) = A: by property 2 we haveA ! A & ) . Also, since) ! A and A ! A, by property
3 we getA & ) ! A.

7. A & X = X : by property 2 we haveX ! A & X . Moreover, sinceA ! X and X ! X ,
by property 3 the conclusion follows.
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Also, we deÞne theintersection of A and B, denoted byA ! B , as the set that contains
the common elements betweenA and B. In other words,

x " A ! B #$ [(x " A) %(x " B)].

Some essential properties of the intersection are listed below, and their proofs are left as
exercise for the reader.

1. A ! A = A.

2. A ! B & A.

3. If C & A and C & B, then C & A ! B .

4. A ! Ac = ' .

5. A & B and C " P(X ), then A ! C & B ! C.

6. A ! ' = ' .

7. A ! X = A.

By the commutative, associative and distributive properties of the%and ( connectors, we
can see that the union and intersection of sets satisfy similar properties, that is, supposeC is
another subset ofX , then

¥ Commutativity: A ) B = B ) A and A ! B = B ! A.

¥ Associativity: A ) (B ) C) = ( A ) B) ) C and A ! (B ! C) = ( A ! B) ! C.

¥ Distributivity: A ) (B ! C) = ( A ) B) ! (A ) C) and A ! (B ) C) = ( A ! B) ) (A ! C).

In general, we can also consider families of subsets ofX with arbitrary large number of
elements, sayn " N. In this case, we might use the notation{ Ak} n

k=0 to indicate the set of
P(X ) whose elements areA0, A1, . . ., An. We can then deÞne the union of{ Ak} n

k=0 as the
following set

n!

k=0

Ak = { x " X | * k " { 0, . . . , n} , x " Ak} .

In a similar way, we can deÞne the intersection of the elements of{ Ak} n
k=0 as the following set

n"

k=0

Ak = { x " X | +k " { 0, . . . , n} , x " Ak} .

If A ! B = ' we say that they aredisjoint , and if
# n

k=0 Ak = ' , we say that { Ak} n
k=0 is a

pairwise disjoint family.

7



Basic elements of Set theory Math 4031 - Spring 2016

Remark 2.7. Note that, by the commutative and associative properties, it doesnÕt matter
the order in which the union or intersection are taken, so the notation we have chosen is
consistent. Furthermore, the deÞnition of union and intersection of a Þnite family of sets can
also be extended to any inÞnite family of sets{ Ak} k! K indexed by a setK (countable or not)
in the following way

!

k! K

Ak = { x ! X | " k ! K, x ! Ak} and
"

k! K

Ak = { x ! X | #k ! K, x ! Ak} .

By applying the De MorganÕs laws to the deÞnitions of the union and intersection, we get
the following identities

(A $ B)c = Ac %B c and (A %B)c = Ac $ B c.

It is not di ! cult to see that, if { Ak} n
k=0 is a Þnite family of sets, then the De MorganÕs laws

provides the following identities

#
n"

k=0

Ak

$ c

=
n!

k=0

Ac
k and

#
n!

k=0

Ak

$ c

=
n"

k=0

Ac
k.

We left as an exercise for the reader to prove that this is also true for{ Ak} k! K , an inÞnite
family of subsets ofX .

2.3 Exercises

1. Let X be a nonempty set andE & X . Suppose that the following proposition is true

#A, B ! P(X ), (E %A = E %B =' A = B).

Then show that E = ( .

2. Let A and B be subsets of a given setX . Show that

A $ B = ( )' P(A) $ P(B) = { ( } .

Hint: Prove (=' ) by contradiction and () =) by contraposition.

3. Let A and B be subsets of a given setX .

(a) Show that ( /! P(A) \ P (B).

(b) Prove that P(A \ B) & (P(A) \ P (B)) %{ ( } .

(c) Give an example of setA and B such that

P(A \ B) *= ( P(A) \ P (B)) %{ ( }

8
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4. Let us consider the set operation! deÞned via

A ! B = Ac ! B c.

Let X be a nonempty set and! " P(X ) be a nonempty set such that

#A, B $ ! , A ! B $ ! .

Show that if A, B $ ! , then

(a) Ac $ ! .

(b) A ! B $ ! .

(c) A %B $ ! .

Conclude that & $ ! and X $ ! .

5. Let A and B be subsets of a given setX . Show by contraposition that

[(Ac ! B ) %(A ! B c)] = B =' (A = &).

6. Let A, B and C be subsets of a given setX . Prove that

A ! B ! C = & =' (A \ B) %(B \ C) %(C \ A) = A %B %C.
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Week 3: The Real numbers

We start now the study of the set of Real numbers, which we have denoted byR. As we said
the Þrst week, our exposition will be based on some prescribed rules, calledaxioms, that will
allow us to provide a consistent description of the set of Real numbers. The axioms we will
present can be divided into three groups: algebraic, order and the supremum axiom.

3.1 Algebraic properties of the Real numbers

First of all, we write x = y to indicate that the Real numbersx and y are the same; otherwise
we write x != y. Formally speaking, = is a relation onR that can be deÞned using the equality
of sets as below:

" x, y # R, x = y $% { x} = { y} .

We now consider two basic operations deÞned onR, the sum (+) and product (á) of Real
numbers. We will write

x + y and x áy

for the elements obtained respectively as the sum and product of two Real numbersx and y.
It may sound familiar to you that the sum and product of Real numbers is a Real number.

We donÕt prove this statement and just accept it as a prescribed rule. Actually, this is the Þrst
axiom for Real numbers we are going to study and it is known as theclosure axiom :

" x, y # R, x + y # R & x áy # R(A0)

Each of the operations, sum and product, has four additional axioms associated with it.
These are the associative, the commutative, the additive/multiplicative identity and the addi-
tive/multiplicative inverse axioms. In mathematical terms, these rules are written respectively:

" x, y, z # R, (x + y) + z = x + ( y + z) & (x áy) áz = x á(y áz)(A1)

" x, y # R, x + y = y + x & x áy = y áx(A2)

' 0, 1 # R, 0 != 1, " x # R, x + 0 = x & " x # R, x á1 = x(A3)

" x # R \ { 0} , ' !y # R, x + y = 0 & ' !z # R, x áz = 1(A4)

In the last axiom, the Real numbersy and z are called theadditive and multiplicative
inverses , respectively. Since for anyx # R there is a unique inverse, we normally use the
notation ( x and x! 1 to indicate such elements. Note that the additive inverse of 0 has not
been deÞned in (A4). However, it is not di! cult to prove, using (A3) and (A4), that 0 is the
(unique) additive inverse of 0; we leave this as exercise for the reader.
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Remark 3.1. Note that (A3) provides the existence of at least two di! erent Real numbers: 0
and 1. Therefore, using the sum we can construct other numbers, such as the Naturals via

2 := 1 + 1 , 3 := 2 + 1 , 4 := 3 + 1 , . . .

Here the notationa := b means that the symbola is deÞned with the valueb.

The sum and product of Real numbers are related via an algebraic relation called the
distributive axiom, which can be expressed as follows

! x, y, z " R, (x + y) áz = ( x áz) + ( y áz) # z á(x + y) = ( z áx) + ( z áy).(A5)

The six axioms we have presented are enough to derive several properties of the Real numbers.
For example, we can prove the so-calledsquare of a binomial formula:

(a + b)2 = a2 + 2 á(a áb) + b2,

where the notationx2 stands for the productx áx, which is called thesquare of x. Let us see
a detailed proof of this formula:

(a + b)2 = ( a + b) á(a + b) (DeÞnition of the square of (a + b))

= a áa + báa + a áb+ báb (Axiom ( A5) used twice)

= a áa + a áb+ a áb+ báb (Axiom ( A2))

= a2 + a áb+ a áb+ b2 (DeÞnition of the squarea and b)

= a2 + 1 á(a áb) + 1 á(a áb) + b2 (Axiom ( A3))

= a2 + (1 + 1) á(a áb) + b2 (Axiom ( A5))

= a2 + 2 á(a áb) + b2 (DeÞnition of 2)

Other properties of Real numbers based on the axioms are:

(1) x á0 = 0: By (A3) and (A5), x á0 = x á(0 + 0) = x á0 + x á0, the adding$ (x á0) in the
equality, we get the result.

(2) $ (x + y) = ( $ x) + ( $ y): Remark that (x + y) + ( $ x) + ( $ y) = 0 This is a conse-
quence of the associative and commutative axioms. Then, the conclusion follows from
the uniqueness of the additive inverse ofx + y.

(3) x á($ y) = $ (x áy): We need to show thatx áy + x á($ y) = 0. Using (A5), (A3) and
property (1), we getx áy + x á($ y) = x á(y + $ y) = x á0 = 0, which completes the proof.

(4) x áy = ( $ x) á($ y): Using property (3) and (A2) twice each, we get

($ x) á($ y) = $ (($ x) áy) = $ (y á($ x)) = $ ($ (y áx)) = $ ($ (x áy)).

It is not di ! cult to see from (A4), that $ ($ (x áy)) = x áy, and so the conclusion follows.
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From the sum and product we can deÞne new operations onR. For example, thesubtrac-
tion (-) and division (/) which are deÞned via:

! x, y " R, y #= 0, x $ y := x + ( $ y) % x/y := x áy! 1.

Remark 3.2. Since the additive inverse of0 is well deÞned (it is0 itself ), we can extend the
subtraction for the casey = 0. Under these circumstances, we just get

x $ 0 := x + 0 = x.

Nevertheless, it is not possible to do the same for the division without getting some inconsis-
tency with the axioms; this is essentially because the multiplicative inverse of0 can not exist.
For example, suppose that0! 1 exists and it is a Real number. Then, on the one hand we have

0 á0! 1 = 1.

But, on the other hand, by axioms(A3), (A4) and (A5)

0 = 0 á0! 1 $ 0 á0! 1 = (0 + 0) á0! 1 $ 0 á0! 1 = 0 á0! 1 + 0 á0! 1 $ 0 á0! 1 = 0 á0! 1 = 1.

This conclusion contradicts axiom(A3).

3.2 Order axioms

So far, we know that Real numbers can be summed o multiplied, but we donÕt know how to
compare them. To do so, we introduce anorder relation (&), which satisÞes the following
axioms:

! x " R, x & x (Reßexivity).(O1)

! x, y " R, (x & y % y & x) =' x = y (Antisymmetry) .(O2)

! x, y, z " R, (x & y % y & z) =' x & z (Transitivity) .(O3)

! x, y " R, x & y ( y & x (Comparability) .(O4)

The statement x & y is read asx is less than or equal toy and we say thatR is a totally
ordered set . We can also readx & y as y is greater than or equal tox.

Remark 3.3. Let us point out that by the Reßexive axiom, the converse of the Antisymmetric
axiom holds true, that is

! x, y " R, x = y =' (x & y % y & x).

This means in particular that

x & y % x = y )' x = y.

We leave the proof of the last equivalence as exercise for the reader.
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From the order relation ! we can deÞne other order relations. For example, we say thatx
is less thany, written as x < y , if and only if

x ! y " x #= y.

This new order relation satisÞes neither the axioms (O1), (O2) nor (O4). However, its utility
is reßected in the next trichotomy result.

Theorem 3.1. For any x, y $ R, only one of the following statements is true

x < y, x = y or y < x.

Proof. Let us Þrst check that the statements are mutually exclusive. Letx, y $ R be Þxed but
arbitrary.

¥ Suppose thatx = y, then x #= y is false and thus, neitherx < y nor y < x can be true.

¥ Suppose thatx #= y, then clearly x = y is false. Furthermore, by the Comparability
axiom (O4) we have that eitherx ! y or y ! x is true. Note that x ! y and y ! x can
not be both true at the same time, because otherwise the Antisymmetric axiom (O2)
would imply that x = y which can not be. Therefore, by the deÞnition of< , either x < y
o y < x , but not both at the same time.

In order to complete the proof, we need to show that at least one of the statements is true.
By the Comparability axiom (O4), we have that eitherx ! y or y ! x is true. Without loss of
generality, we can assume thatx ! y; if y ! x, we use the same arguments but switching the
roles ofx and y. We claim that

x ! y %& (x < y ) ' (x = y).

Indeed, this follows from the following reasoning

x ! y %& x ! y " (x #= y ' x = y)

%& (x ! y " x #= y) ' (x ! y " x = y)

%& (x < y ) ' (x = y)

This mean that either x < y or x = y is true, and so, at least one of the statements is true.

Theorem3.1allows us to represent the set of Real numbers as a horizontal line that extends
inÞnitely in both directions. This means that each Real number can be associated with a point
in the line, and for any x, y $ R, if x < y we have that x appears at the left ofy. Otherwise,
x appears at the right ofy.

R
x y

4



Math 4031 - Spring 2016 The Real numbers

The order relation we have introduced can be related to the sum and product by means of
the following Compatibility axioms:

! x, y, z " R, x # y =$ x + z # y + z.(C1)

! x, y, z " R, x # y % 0 # z =$ x áz # y áz.(C2)

Moreover, the following properties can be derived from the preceding axioms:

(a) x # y =$ & y # & x: Sincex # y, in the light of (C1) we get 0 = x & x # y & x. Hence,
adding &y to the last inequality and, using (C1) and (A2), we get the desired inequality.

(b) x # y % z # 0 =$ y áz # x áz: By property (a), 0 # & z, and so by (C2), we get

&(x áz) = x á(&z) # y á(&z) = &(y áz).

The conclusion follows from property(a) and the fact that a = &(&a).

(c) 0 # x2: If 0 # x, the result is a direct consequence of (C2). If on the contrary, x # 0,
the result follows from property(b).

(d) x < x + 1: It is clear that x '= x + 1, otherwise we get 0 = 1. Furthermore, by property
(c) we get that 0# 12 = 1 á1 = 1. Hence, by (C1), we obtain x = x + 0 # x + 1.

(e) 1 # x =$ x # x2: Since 0# 1, by(O3) we get in particular that 0 # x, and so by (C2)
we getx = 1 áx # x áx = x2.

(f) x # 1 % 0 # x =$ x2 # x: Similar as the proof above.

(g) x # y %0 < x =$ y! 1 # x! 1: Let us Þrst prove that 0< x ! 1. Suppose by contradiction
that 0 < x ! 1 is false. This means thatx! 1 # 0, and by Theorem3.1, we must have that
x! 1 < 0. Hence, by property(b), we get 1 = x áx! 1 # 0 áx! 1 = 0. Which is impossible,
so we must have 0< x ! 1. In the same way, we can prove that 0< y ! 1. Therefore,
multiplying the inequality x # y Þrst by x! 1 and then y! 1, we get the result wanted.

3.2.1 Some particular subsets of R

The order relations we have introduced are also helpful to deÞne new subsets ofR, called
intervals . For any a, b" R with a # b we deÞne:

¥ The closed bounded interval : [a, b] := { x " R | a # x % x # b} .

¥ The open-closed bounded interval : (a, b] := { x " R | a < x % x # b} .

¥ The closed-open bounded interval : [a, b) := { x " R | a # x % x < b} .

¥ The open bounded interval : (a, b) := { x " R | a < x % x < b} .

Remark 3.4. For the extreme casea = b we have that[a, b] = [ a, a] = { a} but

(a, b] = ( a, a] = [ a, b) = [ a, a) = ( a, b) = ( a, a) = ( .
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We might also consider the followingunbounded intervals :

• The closed unbounded intervals :

[a,+1) := {x 2 R | a  x } and (�1, b] := {x 2 R | x  b}.

• The open unbounded interval :

(a,+1) := {x 2 R | a < x } and (�1, b) := {x 2 R | x < b}.

Here the symbols +1 and �1 are only used for sake of notation, which means that they
donÕt have a meaning by themselves. Furthermore, the intervals (0, +1) and (�1, 0) will be
particularly interesting. We say that x is a positive Real number if x 2 (0, +1). Similarly,
x is said to be anegative Real number if x 2 (�1, 0).

3.2.2 The absolute value

We deÞne the absolute value of a Real numberx, denoted by |x|, as the Real number that
agrees withx, when the latter is positive and with�x when x is negative. In other words,

|x| =

(
x if 0  x

�x if x < 0

Note that by deÞnition, |x| = |� x| for any x 2 R.
The absolute value will play a crucial role when studying sequences and convergence. For

the moment, we restrict our attention to some of its basic properties:

(i) x  |x|: Note that we always have 0 |x|, so if x  0, the result is straightforward. On
the other hand, if 0 x, then |x| = x, so the conclusion follows as well.

(ii) (triangular inequality ) |x + y|  |x| + |y|: By property (i) we have that x  |x|,
�x  |x|, y  |y| and �y  |y|. Hence. if on the one hand we have 0 x + y, then
|x+ y| = x+ y  |x|+ |y|. On the other hand, ifx+ y  0, then 0 �(x+ y) = ( �x)+( �y)
and so|x + y| = ( �x) + ( �y)  |x| + |y|, and the proof is complete.

(iii) |x · y| = |x| · |y|: We might assume thatx 6= 0 and y 6= 0, otherwise the result is
straightforward. To complete the proof we need to put on cases. We are only going
to do the casex  0 and 0 y, the others remain as exercise for the reader. In the
circumstances we described before,|x| = �x and |y| = y, but x · y  0 (this is because
(C2) and property (b)), then |x · y| = �(x · y) = ( �x) · y = |x| · |y|.

(iv) ||x|� |y||  |x � y|: Let us assume without loss of generality that||x|� |y|| = |x|� |y|.
By (A4) and the triangular inequality we get |x| = |x � y + y|  |x � y| + |y|. Finally,
adding �|y| in the last inequality we get the result wanted.

(v) For any a 2 (0, +1), |x|  a if and only if �a  x ^ x  a: By property (i) and (O3)
we immediately havex  a. Moreover, by property ((a)), we get that �a  �|x| and
�|x| = �|� x|  �(�x) = x. Thus, by (O3) we get�a  x, which completes the proof.
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3.3 The supremum axiom

Note that if we replace, in all the axiom we have presented, the setR by Q, the axioms still
make sense. This could wrongly yield to the idea that the set of Rational and Real numbers
are the same. There is another axiom, called theSupremum axiom , that will allow us to
distinguish Q from R; see Exercise7.

Let us now introduce some deÞnitions. Given a subsetA ! R, we say that it is bounded
above if

" M # R, $x # A, x % M.(3.1)

In a similar way, we say thatA is bounded below if

" m # R, $x # A, m % x.(3.2)

Any Real number that satisfy (3.1) or (3.2), is calledupper or lower bound of A, respectively.
If A is bounded below and above, we just say that it is abounded set.

Example 3.1. The deÞnition of bounded set is consistent with the deÞnition of bounded in-
tervals we have done. Indeed, for anya, b# R with a % b, the intervals

[a, b], [a, b), (a, b] and (a, b)

are all examples of bounded set. Herea is a lower bound andb is an upper bound for any of
those subsets. Notice as well that the unbounded intervals

[a,+ & ), (a,+ & ), ('& , b] and ('& , b)

are not bounded, but the Þrst two are bounded below (a is a lower bound) and the last two are
bounded above (b is an upper bound).

Note that in Example 3.1, any number greater thanb is also an upper bound for any of
the bounded intervals, but there are no other Real numbers, less thanb than can be an upper
bound of any of the bounded intervals. In other words,b is the least upper bound we can Þnd
of, for instance,A = [ a, b). In this case, we say that this upper bound is thesupremum of
A and we denote it by sup(A). In mathematical terms, M = sup(A) if and only if M is an
upper bound ofA and

$N # R, [($x # A, x % N ) =( M % N ].

From this deÞnition we can see that the supremum is uniquely determined (verify this, suppose
there are two di! erent supremum and then conclude using the Antisymmetric axiom).

Analogously, we deÞne theinÞmum of A, denoted by inf(A), as the Real numberm that
is a lower bound ofA and such that

$n # R, [($x # A, n % x) =( n % m].

Example 3.2. We have that for anya, b# R with a % b

b= sup([a, b]) = sup([a, b)) = sup(( a, b]) = sup(( a, b)) = sup(( '& , b]) = sup(( '& , b))

a = inf([ a, b]) = inf([ a, b)) = inf(( a, b]) = inf(( a, b)) = inf([ a,+ & )) = inf(( a,+ & )).
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In the special case that inf(A) ! A, we say that inf(A) is the minimum of A. Analogously,
when sup(A) ! A we say that sup(A) is the maximum of A. In this case, we change the
notation, and we write min(A) and max(A), for the minimum and maximum ofA, respectively.

Example 3.3. We have that for anya, b! R with a " b

b= max([ a, b]) = sup(( a, b]) = sup(( #$ , b])

a = min([ a, b]) = inf([ a, b)) = inf([ a,+ $ )).

We are now in position to state the Supremum axiom. This says that for any nonempty
bounded above subset ofR its supremum is a Real number, that is,

%A ! P(R) \ { &} , (A is bounded above =' sup(A) ! R).(S)

As we mentioned earlier, this is what distinguishR from Q, because, as you will see in Exercise
7, not every subset ofQ has a supremum that is also a Rational number.

Remark 3.5. The Supremum axiom has a counterpart, the InÞmum axiom which says that
for any nonempty bounded below subset ofR its inÞmum is a Real number. We leave the proof
that both axioms are equivalent as exercise for the reader.

One of the main consequences of the Supremum axiom is that the set of Real numbers is
Archimedean . This is summarized in the next theorem.

Theorem 3.2. R is Archimedean, that is,

%x, M ! (0, + $ ), ( n ! N, M < n áx.(3.3)

Proof. We divide the proof into three steps:

1. Let us Þrst prove that N is not bounded above. We argue by contradiction, that is,
suppose thatN is bounded above. Since it is also nonempty (1! N for instance), by the
Supremum axiom, sup(N) is a Real number. In particular, sup(N) # 1

2 is a Real number
that can not be an upper bound ofN. So, there isn ! N such that

sup(N) #
1
2

< n.

Then, adding 1 in the inequality, we get

sup(N) +
1
2

< n + 1.

But, by deÞnition, n + 1 " sup(N), becausen + 1 ! N. Thus, by (O3)

sup(N) +
1
2

" sup(N),

which is not possible, and consequently,N is not bounded above.

2. To Þnish, let us also use a contradiction argument again. Suppose that (3.3) is false,
then its negation is true, that is

( x, M ! (0, + $ ), %n ! N, n áx " M.

Since,x )= 0, we get that M áx! 1 ! R and it is an upper bound ofN, which contradicts
what we proved in the Þrst step. Therefore, the conclusion follows.
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3.4 Exercises

1. Let x, y, z, w ! R with y, w "= 0. Prove, mentioning each of the axioms and properties
you are using, that

x áy! 1 + z áw! 1 = ( x áw + y áz) á(y áw)! 1

2. Let x, y, z, w ! R such that (x áw)+( # (yáz)) = 0. Prove, mentioning each of the axioms
and properties you are using, that

((x + y) áw) + ( # (z + w) áy) = 0

3. Prove, detailing each step you do, the following properties:

(a) $x, y ! R, 2 á(x áy) % x2 + y2.

(b) $x ! (0, + & ), 2 % x + x! 1.

(c) $x ! (0, + & ), 1 + 2 áx % (1 + x)2.

(d) $x, y ! (0, + & ), 4 á(x + y)! 1 % x! 1 + y! 1.

(e) $x, y, z ! (0, + & ), x áy + x áz + y áz % x2 + y2 + z2.

(f) $x, y, z ! (0, + & ), 8 áx áy áz % (x + y) á(y + z) á(z + x).

4. Prove, detailing each step you do, the following properties:

(a) x + y + z = 1 ' x, y, z "= 0 =( 8 % (x! 1 # 1) á(y! 1 # 1) á(z! 1 # 1).

(b) x áy áz = 1 =( 3 % x + y + z.

(c) $z ! (0, + & ), x < y + z =( x % y.

5. Show that for any x, y ! R,

(a) if x, y "= 0, then |x áy! 1# yáx! 1| % 1
2 á[(|x|+ |x! 1|) á|y# y! 1|+( |y|+ |y! 1|) á|x # x! 1|)].

(b) |x| % max({| x # y|, |x + y|} ).

Hint: Argue by contradiction and show that for anyt ! [0, 1]

|t(x + y) + (1 # t)(x # y)| < |x|.

6. Let x ! R and consider the setAx = { n ! N | n % x} .

(a) Prove that sup(Ax) is a Real number. This number is called theinteger part of
x and it is denoted by [x].

(b) Prove now that [x] ! Ax . To do so, follow the next step:

i. Prove that there is n ! N such that [x] # 1
2 < n ' n % [x].

ii. Show that for any m ! N, if n < m then m "! Ax .
iii. Prove that [x] is the maximum ofAx and conclude.

9



The Real numbers Math 4031 - Spring 2016

7. Let us consider the setQ = { x ! Q | x2 < 2} . The aim of this problem is to show that
the supremum ofQ is not a Rational number, and so the Supremum axiom doesnÕt hold
when replacingQ for R. We divide the proof in several steps:

(a) Prove that Q is nonempty and bounded above.

(b) Prove that sup(Q)2 = 2. To do so, follow the next steps:

i. Assume that sup(Q)2 < 2 and get a contradiction by proving that

(sup(Q) + a)2 < 2, wherea = min
!"

1
2

,
2 " sup(Q)2

2 sup(Q) + 1

#$
.

ii. Suppose that sup(Q)2 > 2 and show that s = sup(Q) " sup(Q)2! 2
2 sup(Q) is also an

upper bound ofQ. Conclude that the only possible option is that sup(Q)2 = 2.

(c) Suppose that sup(Q) ! Q and let p
q be its lowest terms representation, that is,p

and q are Natural numbers having no common factors.

i. Prove that p is even if and only ifp2 is even.
Hint : Recall that p is even ifp = 2 án for somen ! N. To prove the implication
(# =) use the contrapositive and the fact that a number that is not even, must
be odd, that is, it can be written as 2án + 1 for somen ! N.

ii. Prove that p and q must be both even, and then conclude.

10



Math 4031 - Advanced Calculus I
Instructor: Dr. Cristopher HERMOSILLA

Louisiana State University - Spring 2016

Week 4: Sequences of Real numbers

We continue the study of the set of Real numbers by introducing the notion of sequence. From
now on, we assume that all the Real numbers axioms are well known and we use them without
making any reference, except in particular situations.

Before going further let us introduce some notation. IfA is a Þnite set, whose elements are
a1, a2, . . ., ak, we write max{ a1, a2, . . . , ak} to indicate max(A). Moreover, for anyn ! N,
the notation xn stands for the Real number deÞned recursively via

" x ! R, x0 = 1 and xn := xn! 1 áx, n ! N \ { 0} .

4.1 Sequences and converge

Let us begin the exposition with an example. We consider the set of Real numbers deÞned via

A =
!

x ! R

"
"
"
" #n ! N \ { 0} , x =

1
n

#

We know that the order in which we write the elements ofA is irrelevant for its description.
For instance,

A1 :=
!

1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

, . . .
#

and A2 :=
!

1
2

, 1,
1
4

,
1
3

,
1
6

,
1
5

, . . .
#

are equivalent description ofA. However, if we assign an order to each positions ofA1 and A2,
say from left to right, and we associate each blank with a positive Natural number (1 for the
Þrst position, 2 for the second one, and so on). We get thatxn and yn, the nth element ofA1

and A2, can be described via

xn =
1
n

and yn =

$
1

n+1 n is odd
1

n! 1 n is even
.(4.1)

We write { xn} "
n=1 and { yn} "

n=1 to indicate the objects created from the setsA1 and A2 with
the order we have prescribed. This kind of objects is what we call asequence, that is, a
(countable) inÞnite set whose elements have an order associated with them.

Similarly as done above, we denote a generic sequence by{ xn} "
n=1 , and we may use alsoyn

or any other letter with the subscript n to indicate the nth element of the sequence at hand.

1
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The main interest in studying sequences is their relation with the idea ofapproximation.
Intuitively, we see that the sequences given by (4.1) get closer and closer to 0 asn increases
its value, until the point that for any error ! ! (0, + " ) we may take, we can pick ann ! N
large enough so that|xn | # ! . This yields to the concept ofconvergence .

DeÞnition 4.1. We say that a sequence{ xn} !
n=1 converges if there existsL ! R such that

$! ! (0, + " ), %N ! N, $n ! N, (N # n =& |xn ' L | # ! ).(4.2)

Under these circumstances, we writexn ( L and L is called thelimit of { xn} !
n=1 .

Example 4.1. Let us prove that xn ( 0, where xn is given by (4.1). Since, we have a
candidate to limit that has been prescribed, we just need to verify that(4.2) is satisÞed. Let
us exhibit one way to prove this:

1. We take any! ! (0, + " ), that is, ! is a generic positive Real number.

2. We write the functional statement|xn ' L | # ! as explicit as we can. In this case, since
xn = 1

n and L = 0, we get 1
n # ! ; here we have used| 1

n | = 1
n .

3. We assume there existsN ! N such that (4.2) holds true and Þnd some condition over
it. In this case, it will be that 1 # N á! . Furthermore, note that by the Compatibility
axiom (C2), this condition is su! cient to prove the convergence. Indeed, sinceN # n
and ! ! (0, + " ), we getN á! # n á! . Consequently, if1 # N á! then 1 # n á! .

4. Find N ! N for which the condition found in the previous part is satisÞed. To do this, we
need to get the existence from another source; for instance any theorem that provides the
existence of some Real number. In this case, we use the Archimedean property (Theorem
3.2) with M = 1 and x = ! . This theorem gives the existence ofN ! N such that
1 = M < N áx = N á! . In particular, we also have1 # N á! , so the conclusion follows.

Notice that in DeÞnition 4.1, the Natural number N depends in general on! , as in the
preceding example. This means that, theN associated with! = 1 may be di! erent from the
one associated with! = 1

2; normally, the latter will be greater than the Þrst one.

Remark 4.1. The limit of a sequence is uniquely determined. To see this, assume by contra-
diction that there are two limits, sayL1 and L2. Since L1 ' L2 )= 0, we have that14|L1 ' L2| is
a positive Real number, and so, it can be used as! in (4.2). Furthermore, given that { xn} !

n=1
converges, for! = 1

4|L1 ' L2|, we can ÞndN1, N2 ! N such that

$n ! N, [(N1 # n =& |xn ' L1| # ! ) * (N2 # n =& |xn ' L2| # ! )].

Let n ! N be such thatN1 # n and N2 # n (for instance n = max{ N1, N2} ). Hence,

|L1 ' L2| = |L1 ' xn + xn ' L2| # |L1 ' xn | + |xn ' L2| # ! + ! = 2! =
1
2

á |L1 ' L2|

which yields to a contradiction. So, we must haveL1 = L2.

2
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4.1.1 Some conditions for convergence

Recall that sequences can also be seen as (inÞnite) nonempty subsets ofR. Hence, we say
that a sequence{ xn} !

n=1 is bounded below if it is bounded below as a set. Since each of the
elements of the sequence can be enumerated, we write this deÞnition in the following way:

! m " R, #n " N, m $ xn.

In an analogous way, we say that{ xn} !
n=1 is bounded above provided that

! M " R, #n " N, xn $ M.

We say that { xn} !
n=1 is bounded if it is bounded below and above at the same time. We

can easily verify that the sequences given by (4.1) are both bounded; it is enough to take
m = 0 and M = 1. Moreover, by the Supremum axion, sup({ xn} !

n=1 ) is well deÞned whenever
{ xn} !

n=1 is bounded above. By using similar arguments, we also get that inf({ xn} !
n=1 ) is well

deÞned whenever{ xn} !
n=1 is bounded below. Under theses circumstances, we might use the

following notation

sup{ xn} := sup({ xn} !
n=1 ) % inf { xn} := inf( { xn} !

n=1 )

It turns out that any sequence that converges must be bounded.

Theorem 4.1. Suppose that{ xn} !
n=1 converges, the it is bounded.

Proof. By the deÞnition of convergence, we have that there isL " R so that (4.1) holds true.
In particular, let N " N be the number associated with! = 1. We then have that

#n " N, N $ n, |xn | = |xn & L + L| $ |xn & L| + |L | $ 1 + |L|.

This means that the tail of the sequences is bounded, that is,

#n " N, N $ n, &(1 + |L|) $ xn % xn $ 1 + |L|.

On the other hand, the set{ x1, x2, . . . , xN " 1} is a Þnite, so it is bounded. Letm and M be
a lower and upper bound of this set. Then, the following is always true

#n " N, min({ m, &(1 + |L|)} ) $ xn % xn $ max({ M, 1 + |L|} .

Hence,{ xn} !
n=1 is bounded and the proof is complete.

The preceding theorem provides a necessary condition for a sequence to converge. However,
this condition is not su! cient. For example, the sequence whose terms are given by

xn =

!
1 if n is even

&1 if n is odd

is bounded but it doesnÕt converge. One way to make boundedness a su! cient condition for
convergence is to ask some additional structure to the sequence.

Note that the sequence{ xn} !
n=1 given by (4.1) has the special feature that each of its

elements is less than the preceding one. We call this propertymonotonicity .

3
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DeÞnition 4.2. A sequence{ xn} !
n=1 is calledmonotonic if one of the following holds true:

¥ { xn} !
n=1 is a decreasing sequence , that is, ! n " N, xn+1 # xn.

¥ { xn} !
n=1 is a increasing sequence , that is, ! n " N, xn # xn+1 .

We now provide a criterion to determine that a sequence converges based on monotonicity.

Theorem 4.2. Let { xn} !
n=1 be an increasing sequence bounded above, then it converges. Anal-

ogously, if { xn} !
n=1 is a decreasing sequence bounded below, then it converges.

Proof. We only prove the case of increasing sequences, the other is similar and is left as exercise
for the reader. Since{ xn} !

n=1 is bounded above, by the Supremum axiom,L := sup{ xn} " R.
We claim that xn $ L. Take ! " (0, + %) arbitrary, by the deÞnition of the supremum, there
is N " N such that

L & ! # xN .

By the monotonicity of the sequence and the Transitivity axiom, we get that

! n " N, (N # n =' L & ! # xn).

Furthermore, by deÞnition 0# L & xn = |L & xn| for any n " N. Hence, after a few algebraic
steps we get

! n " N, (N # n =' |L & xn| # ! ).

Therefore, since! " (0, + %) is arbitrary, the conclusion follows.

Example 4.2. Let us consider the sequence given byxn = n" 1
n . It is not di ! cult to see that

{ xn} !
n=1 is bounded above by 1; actually,sup{ xn} = 1. We claim that it is also increasing.

Indeed, since(n & 1) á(n + 1) = n2 & 1 # n2 we get that

xn =
n & 1

n
#

n2

n á(n + 1)
=

n
n + 1

= xn+1 .

Thus, by Theorem4.2 the sequence converges tosup{ xn} = 1.

The next result is a very useful tool to prove the convergence of a sequence and it is called
the Squeeze Theorem . This criterion doesnÕt require a monotone character on the sequence
but that it belongs to an interval whose length is smaller and smaller asn increases its value.

Theorem 4.3. Let { xn} !
n=1 and { yn} !

n=1 be two sequences. Suppose thatxn $ L and yn $ L
for someL " R. Let { zn} !

n=1 be another sequence that satisÞes

! n " N, xn # zn ( zn # yn.

Then { zn} !
n=1 converges toL.

Proof. Let ! " (0, + %) and N1, N2 " N given by the deÞnition of convergence of{ xn} !
n=1 and

{ yn} !
n=1 , respectively. LetN = max{ N1, N2} and take anyn " N such that N # n, then using

the properties of the absolute value

zn & L # yn & L # |yn & L| # ! ( & ! # & |xn & L| # xn & L # zn & L.

This means thatzn & L # ! and &! # zn & L, or in other words, |zn & L| # ! . This completes
the proof.

4
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Example 4.3. We consider the sequence determined by

zn =

!
1
n if n is even

! 1
n if n is odd

It is not di ! cult to see that, settingxn = ! 1
n and yn = 1

n , the hypothesis of Theorem4.3 are
satisÞes withL = 0. Hence, we also havezn " 0.

4.1.2 Algebraic combination of sequences

We Þnish this section by showing that algebraic combinations of convergent sequences also
converge and their limits can be obtained in terms of the initial sequences. This will help us
to study the convergence of complicated sequence in terms of simple ones.

Theorem 4.4. Let { xn} !
n=1 and { yn} !

n=1 be two sequence. Suppose thatxn " x and yn " y
for somex, y # R. Then

1. $c # R, the sequence{ c áxn} converges toc áx.

2. the sequence{ xn + yn} converges tox + y.

3. the sequence{ xn áyn} converges tox áy.

4. if x %= 0, then 1
xn

" 1
x .

Proof. Let ! # (0, + & ) be Þxed but arbitrary.

1. We can rule out the casec = 0, because the sequence deÞned byzn = 0 converges to
0. Let N # N be given by the deÞnition of convergence of{ xn} !

n=1 but associated with
÷! = 1

|c| á! , that is,

$n # N, N ' n =( |xn ! x| '
1
|c|

á! .

By the properties of the absolute value we have that for anyn # N with N ' n the
following holds true:

|c áxn ! c áx| ' |c| á |xn ! x| ' |c| á
1
|c|

á! = ! .

This means that c áxn " c áx.

2. Let N1, N2 # N given by the deÞnition of convergence of{ xn} !
n=1 and { yn} !

n=1 , respec-
tively, but associated with ÷! = 1

2 á! . We set N = max{ N1, N2} , and in particular we
have

$n # N, N ' n =(
"

|xn ! x| '
1
2

á! ) |yn ! y| '
1
2

á!
#

.

It follows that for any n # N with N ' n:

|(xn + yn) ! (x + y)| ' |xn ! x| + |yn ! y| '
1
2

á! +
1
2

á! = ! .

We conclude then thatxn + yn " x + y.

5
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3. Since{ xn} !
n=1 converges, it is bounded. In particular, its absolute value is bounded above

by somec ! (0, + " ) (it is always bounded below by 0). Moreover, we can always assume
that |y| # c, becausec is only an upper bound and any number greater thanc is also an
upper bound for{| xn |} !

n=1 .

Using the same argument as above, we takeN1, N2 ! N given by the deÞnition of
convergence of{ xn} !

n=1 and { yn} !
n=1 , respectively, but associated with ÷! = 1

2ác á! and we
also setN = max{ N1, N2} . We take anyn ! N with N # n and obtain that

|xn áyn $ xáy| = |xn áyn $ xn áy+ xn áy$ xáy| # |xn |á|yn $ y|+ |y|á|xn $ x| # cá|yn $ y|+ cá|xn $ x|.

On the other hand, since then terms|xn $ x| and |yn $ y| are both bounded above by
1

2ác|c| á! , we Þnally obtain that xn áyn % x áy, because

|xn áyn $ x áy| #
1
2

á! +
1
2

á! = ! .

4. Let N1, N2 ! N be given by the deÞnition of convergence of{ xn} !
n=1 but associated with

÷! = 1
2 á |x| and ÷! = 1

2 á |x|2 á! . Therefore,

&n ! N, N1 # n =' |xn $ x| #
1
2

á |x|(4.3)

&n ! N, N2 # n =' |xn $ x| #
1
2

á |x|2 á!(4.4)

Let N = max{ N1, N2} . Note that (4.3) and (4.4) hold as well if we replaceN1 and N2

with N , respectively.

On the one hand, from (4.3) we get for anyn ! N with N # n that

|x| # |x $ xn + xn| # |x $ xn| + |xn | #
1
2

á |x| + |xn |.

This means that 1
2 á |x| # |xn | for n ! N appropriate. In particular, 0 < |xn | and

1
|xn | # 2 á 1

|x| for all n ! N that satisÞesN # n.

On the other hand, using (4.4) and the remark we did above, we can conclude, because

&n ! N, N # n ='

!
!
!
!

1
xn

$
1
x

!
!
!
! =

1
|xn | á |x|

á |xn $ x| # 2 á
1

|x|2
á

1
2

á |x|2 á! = ! .

4.2 Completeness

We turn our attention into an important convergence criterion calledcompleteness . This is a
very powerful tool that allows us to determine whether a sequence has a limit by only studying
the distances between its terms. To be more accurate, we introduce the following deÞnition.

6
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DeÞnition 4.3. We say that { xn} !
n=1 is a Cauchy sequence if for any ! ! (0, + " ) the

following condition is met

#N ! N, $n, p ! N, (N % n =& |xn ' xn+ p| % ! ).(4.5)

Example 4.4. Let us consider the sequence given by

xn =
n!

k=1

1
k2

:= 1 +
1
4

+
1
9

+ . . . +
1
n2

.

This sequence is a Cauchy sequence. Indeed, sincek ' 1 % k for any k ! N, we get

|xn ' xn+ p| =
n+ p!

k= n+1

1
k2

%
n+ p!

k= n+1

1
k(k ' 1)

=
n+ p!

k= n+1

1
k ' 1

'
1
k

=
1
n

'
1

n + p
%

1
n

.

Hence, given! ! (0, + " ) we know by the Archimedean property that there isN ! N such that
1 % ! áN , and so, (4.5) holds too with theN we have chosen above.

It turns out, as we will prove shortly, that a sequence converges if and only if it is a Cauchy
sequences. In this case, we say thatR is a complete space . This claim shows the utility of
the notion of completeness. This criterion doesnÕt require a priori knowledge about the limit;
it can be proven (by more sophisticated means) that the sequence in Example4.4 converges
to 1

6 á" 2, which is not obvious from the deÞnition of the sequences. Moreover, it is not di! cult
to see that the sequence in Example4.4 is also increasing. However, it is not straightforward
to prove that it is bounded above, which may turn Theorem4.2 di! cult to apply.

Theorem 4.5. Let { xn} !
n=1 be a sequence of Real numbers, then{ xn} !

n=1 converges if and only
if it is a Cauchy sequence.

Proof. The proof consists in two parts. We Þrst prove that if a sequence converges, then it
must also be of Cauchy type. Let! ! (0, + " ) be Þxed but arbitrary. By the deÞnition of
convergence, there isN ! N such that

$n ! N,
"

N % n =& |xn ' L | %
!
2

#
.(4.6)

Let n ! N such that N % n. It is clear that N % n + p for any p ! N. In particular, by ( 4.6),
we have that, if n, p ! N are as above, we get

|xn ' L | %
!
2

( |xn+ p ' L | %
!
2

.

Combining these two inequalities we get

|xn ' xn+ p| = |xn ' L + L ' xn+ p| % |xn ' L | + |L ' xn+ p| %
!
2

+
!
2

= ! .

In other words, { xn} !
n=1 is a Cauchy sequence and the Þrst part of the proof is complete.

Let us now assume that{ xn} !
n=1 is a Cauchy sequence and prove that it converges. This

part is considerably more di! cult and for this reason we divide it into two steps: we Þrst
construct a candidate to limit (as the supremum of a particular set) and then we prove that
it is actually the limit of the sequence.
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1. By the deÞnition of Cauchy sequence, we have that there isN1 ! N such that

" n, p ! N,
!

N1 # n =$ |xn %xn+ p| #
1
2

"
.

In a similar way, there isN2 ! N such that

" n, p ! N,
!

N2 # n =$ |xn %xn+ p| #
1
4

"
.

Note that we can also assume thatN1 # N2 and the preceding statement is still valid.
Hence, continuing the process we see that for anyk ! N \ { 0, 1} we can ÞndNk ! N such
that Nk! 1 # Nk and

" n, p ! N,
!

Nk # n =$ |xn %xn+ p| #
1
2k

"
.

Let us now consider the set

A =
#

x ! RN | &k ! N, x = xNk %
1
2k

$
.

This set is nonempty. Furthermore, it is bounded above. Indeed, letx ! A. By deÞnition,
there is k ! N so that x = xNk % 1

2k . In particular,

x # xNk = xNk %xN1 + xN1 # |xNk %xN1 | + xN1 #
1
2

+ xN1 .

So,M = 1
2 + xN1 is an upper bound ofA. Thus, by the Supremum axiom, sup(A) ! R.

Note that if { xn} "
n=1 were convergent, then eachxNk % 1

2k should approach to the supre-
mum. Consequently, we takeL = sup(A) as our candidate to limit.

2. Given that L = sup(A), there is x ! A such that L % !
3 # x. In other words, there is

k ! N such that
x = xNk %

1
2k

and L # xNk %
1
2k

+
!
3

.

Note that there are inÞnitely manyk ! N that veriÞes the preceding condition; otherwise,
L wouldnÕt be the supremum. The latter means that we can takek ! N as large as we
want. In particular, we can assume that 3# 2k á! . Therefore, we get that for anyn ! N,
if Nk # n then

|xn %L| = |xn %x + x %L| # |xn %x| + |x %L| # |xn %xNk | +
1
2k

+ |x %L|.

On the other hand, we have that|x %L| = L %x # !
3 and by deÞnition|xn %xNk | # 1

2k .
So Þnally, since 3# 2k á! we get

|xn %L| #
1
2k

+
1
2k

+
!
3

= ! ,

which completes the proof.
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4.3 Exercises

1. Let a ! [" 1, 1] and consider the sequence{ xn} !
n=1 deÞned via

xn = 3 á
an

n2
.

Prove using the deÞnition of convergence thatxn # 0.

2. Let { xn} !
n=1 and { yn} !

n=1 be two sequences. Suppose thatxn # x and yn # y for some
x, y ! R. Prove that if xn $ yn for all n ! N, then x $ y. Based on this, determine
whether the limit of a sequence of positive numbers can be a negative number or not.

Hint: Assume that y < x and use! = x " y to get a contradiction.

3. Let { xn} !
n=1 be an increasing sequence and{ yn} !

n=1 be a decreasing sequence such that
xn " yn # 0. Show that { xn} !

n=1 and { yn} !
n=1 converge and have the same limit.

4. Let { xn} !
n=1 be the sequence deÞned via

x1 = 1, xn+1 =

!
9 + x2

n

2
, n ! N \ { 0} .

Here
%

a stands for the unique positive Real numberx that veriÞesa = x2.

(a) Show that { xn} !
n=1 is bounded above by 3.

(b) Show that { xn} !
n=1 is increasing and converges to 3.

5. Let { xn} !
n=1 be a Cauchy sequence. Consider another sequence{ yn} !

n=1 such that

&n ! N \ { 0} , |xn " yn | $
1
n

.

(a) Prove that { yn} !
n=1 is also a Cauchy sequence.

(b) Prove that { xn} !
n=1 converges toL ! R if and only if { yn} !

n=1 converges toL ! R.

6. Let { xn} !
n=1 and { yn} !

n=1 be two sequence that satisfy

¥ { yn} !
n=1 is decreasing withyn # 0 and eachyn being positive.

¥ The sequence{ zn} !
n=1 , is bounded, wherezn :=

n"

k=1

xk.

Show that the sequence{ wn} !
n=1 converges, wherewn :=

n"

k=1

xkyk.

Hint: Prove that { wn} !
n=1 is a Cauchy sequence. To do so, show that for anyn, p ! N

we have

wn+ p " wn = yn+ pzn+ p +
n+ p" 1"

k= n+1

(yk " yk+1 )zk " yn+1 zn

9
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Week 5: Subsequences and Compactness

We turn our attention into a new mathematical concept called compactness, and we exhibit
its relation with sequences of Real numbers. To do this, we need to introduce a new object
called a subsequence.

5.1 Subsequences

Let us consider the sequence

{ xn} !
n=1 :=

!
1
n

" !

n=1

=
!

1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

, . . .
"

.

Note that we can construct another sequence from{ xn} !
n=1 by, for example, taking only the

terms associated with an even number

{ yk} !
k=1 :=

!
1

2 ák

" !

k=1

=
!

1
2

,
1
4

,
1
6

,
1
8

,
1
10

, . . .
"

.

In this case, we have used the rulen = 2 ák to construct the new sequence{ yk} !
k=1 , but we

could have used any other, as for intance,n = 2 ák + 1. Sequences constructed in this way are
called subsequences of { xn} !

n=1 .

DeÞnition 5.1. Let { xn} !
n=1 be a given sequence, we say that{ yk} !

k=1 is a subsequence of
{ xn} !

n=1 if there is a strictly increasing sequence of positive Natural numbers{ nk} !
k=1 , that is,

nk < n k+1 for any k ! N \ { 0} , such that

" k ! N \ { 0} , yk = xnk .(5.1)

We simply write { xnk } !
k=1 to denote such subsequence.

Remark 5.1. Note that in the preceding deÞnition, since{ nk} !
k=1 is an strictly increasing

sequence of positive Natural numbers we must have

" k ! N \ { 0} , k # nk.

Since a subsequence is essentially a sequence, we can talk about its convergence. In par-
ticular, we say that a subsequence converges to some limitL ! R provided that

" ! ! (0, + $ ), %N ! N, " k ! N, (N # k =& |xnk ' L | # ! ).(5.2)

1
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Note that (5.2) agrees with the usual deÞnition of convergence but applied to the sequence
{ yk} !

k=1 that veriÞes (5.1). Moreover, the collection of all the limits of subsequences of{ xn} !
n=1

are called theaccumulation points of { xn} !
n=1 .

Example 5.1. Let us consider the sequence given byxn = ( ! 1)n . We have already discussed
that this sequence doesnÕt converge. However, it is not di! cult to see that it has several sub-
sequences that converge. For example, the subsequences given by the indexn = 2 ák and
n = 2 ák + 1. In the Þrst case we get the sequence whose elements are all identically 1 and
in the other case, the sequence with all the elements being! 1. It is clear that both sequences
converge, to1 and ! 1, respectively. Hence,1 and ! 1 are accumulation points of{ (! 1)n} !

n=1 .
It can be proved that they are the only accumulation points of{ (! 1)n} !

n=1 . We leave this as
exercise for the reader.

For the purposes of the course, the utility of the notion of subsequence is twofold. We
describe them in the next subsections.

5.1.1 Convergence

Let us start with a question. Suppose that a sequence converges, what happens with any of
its subsequences? Does it converge too?

It turns out that subsequences can be thought as particular selections of terms of the
original sequences. Therefore, it may seem natural that if a sequence converges, then any
subsequence must also approach to the limit.

Theorem 5.1. Let { xn} !
n=1 be a given sequence. Suppose thatxn " L, then any subsequence

{ xnk } !
k=1 converges toL.

Proof. Note that by deÞnition we have

#! $ (0, + %), &N $ N, #n $ N, (N ' n =( |xn ! L | ' ! ).(5.3)

On the other hand, by Remark5.1, we also havek ' nk for any positive Natural number.
Therefore, if N ' k for someN $ N, then N ' nk, which means that if (5.3) is true, then so
must be (5.2). Consequently, any subsequence of{ xn} !

n=1 must converges toL as well.

In practice, the theorem is usually used in the contrapositive form, that is, if you Þnd two
subsequences that converge to di! erent limits or a subsequence that diverges, then you can be
sure that the sequence you have been provided at the beginning doesnÕt converge.

Remark 5.2. A direct consequence of Theorem5.1 is that a sequence that converges must
have a unique accumulation point. The converse of this a! rmation doesnÕt hold in general,
that is, a sequence that diverges can have a unique accumulation point. For example, let us
consider the sequence determined by

xn =

!
1 if n is odd,

n if n is even.

It is clear that the unique accumulation point of this sequence is1, however the sequence is not
bounded, so it can not converge.

2
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5.1.2 Sequentially compactness

Remark 5.2 shows that there can be sequences having unique accumulation points that donÕt
converge. To avoid this pathological cases we need to rule out the cases of unbounded se-
quences. For this purpose, we turn our attention into the relation between bounded se-
quence and subsequences. The most important result concerning this is called theBolzano-
Weierstrass Theorem .

Theorem 5.2. Let { xn} !
n=1 be a given sequence. Suppose{ xn} !

n=1 is bounded, then it has
a subsequence that converges. In other words, the set of accumulation points of a bounded
sequence is nonempty.

Proof. Let { xn} !
n=1 be a bounded sequence. We are going to construct a subsequence that is

also a Cauchy sequence, and the result will follow from the completeness ofR.
Let a, b ! R be a lower and upper bound of{ xn} !

n=1 , respectively. Let us consider the
intervals

A1,1 =
!
a,

a + b
2

"
and A1,2 =

!
a + b

2
, b

"
.

Since the sequence{ xn} !
n=1 has inÞnitely many elements, eitherA1,1 or A1,2 contains inÞnitely

many elements of{ xn} !
n=1 (not necessarily all the elements of the sequence). We set

a2 = a, b2 =
a + b

2
, and A1 = A1,1

if A1,1 contains inÞnitely many elements of the sequence, otherwise we set

a2 =
a + b

2
, b2 = b, and A1 = A1,2.

We take n1 := min { n ! N \ { 0} | xn ! A1} . Notice that 1 " n1.
We repeat the process but witha2 and b2, instead ofa and b. Hence, consider the intervals

A2,1 =
!
a2,

a2 + b2

2

"
and A2,2 =

!
a2 + b2

2
, b2

"
.

By the same arguments used above, eitherA2,1 or A2,2 contains inÞnitely many elements of
{ xn} !

n=1 . We set

a3 = a2, b3 =
a2 + b2

2
, and A2 = A2,1

if A2,1 contains inÞnitely many elements of the sequence, otherwise we set

a3 =
a2 + b2

2
, b3 = b2, and A2 = A2,2.

Then we taken2 := min { n ! N \ { 0} | n1 < n # xn ! A2} . Note that, sinceA2 $ A1 we have
that xn1 , xn2 ! A1 and so

|xn1 %xn2 | "
b%a

2
.

3
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Using a recursive argument we can construct a strictly increasing sequence of positive Natural
numbers{ nk} n

k=1 for which we have

|xnk ! xnk +1 | "
b! a

2k
.

We claim that { xnk } !
k=1 is a Cauchy sequence. Indeed, for anyk, p # N \ { 0} we get

|xnk ! xnk + p | "
k+ p" 1!

i = k

|xni ! xni +1 | "
k+ p" 1!

i = k

b! a
2i

=
b! a

2k

p" 1!

i =0

1
2i

.

Note that
" p" 1

i =0
1
2i " 2 so we get that

$k, p # N \ { 0} , |xnk ! xnk + p | "
b! a
2k" 1

.

Hence, given! # (0, + %), by the Archimedean property ofR, we can ÞndN # N such that
b" a

2N ! 1 " ! . Therefore, since for anyk # N \ { 0} such that N " k we have 2N " 1 " 2k" 1 (because
1 " 2), we get that for any k, p # N \ { 0} we have

|xnk ! xnk + p | "
b! a
2k" 1

"
b! a
2N " 1

" ! .

Therefore{ xnk } !
k=1 is a Cauchy sequence, and by the completeness ofR it also converges. So,

the conclusion follows.

In view of the preceding theorem and Exercise 4.2 (Week 4 notes), we have that any interval
of the form [a, b] with a, b# R and a < b satisÞes the following property:

Any sequence contained in[a, b] has a subsequence that converges to someL # [a, b].

This property is known assequential compactness and it can be deÞned for general sets in
the following way.

DeÞnition 5.2. Let A & R be a given set. We say thatA is sequentially compact provided
that any sequence{ xn} !

n=1 contained in A has a subsequence that converges to someL # A. In
other words, if xn # A for any n # N, then there areL # A and { xnk } !

k=1 such thatxnk ' L .

We will study a useful characterization of sequentially compact sets in Exercise4.
The last result we present is in direct correlation with Remark5.2. We postpone the proof

of the theorem to the Exercises section.

Theorem 5.3. Let { xn} !
n=1 be a given sequence. Suppose{ xn} !

n=1 is bounded and has a unique
accumulation point, L # R, then xn ' L .

4
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5.2 Exercises

1. Find all the accumulations points of the sequence given by

xn := ( ! 1)n ásin
!

n á
!
4

"

2. Let { xn} !
n=1 be a Cauchy sequence. Suppose that{ xn} !

n=1 has a subsequence that con-
verge toL " R. Prove that xn # L.

3. Let { xn} !
n=1 be a given sequence. Suppose that{ xn} !

n=1 is monotonic and has a unique
accumulation point L " R. Show that xn # L.

4. We say that a setA $ R is closed if the limit of any convergent sequence contained in
A belongs toA, that is,

(%n " N, xn " A) & xn # L =' L " A.

The aim of this exercise is to prove that a set is sequentially compact if and only if it is
bounded and closed. We divide the proof in several steps:

(a) Suppose thatA is bounded and closed. Show thatA is sequentially compact.

(b) Suppose thatA is sequentially compact. Show thatA is closed.

(c) Suppose thatA is sequentially compact. Show thatA is bounded.
Hint: Note that if the set A is unbounded, then there is a sequence contained in
A such that n ( xn for any n " N \ { 0} .

5. The goal of this problem is to provide a proof of Theorem5.3. The idea is to argue by
contradiction in the following way.

(a) Suppose{ xn} !
n=1 doesnÕt converge toL and show that there are" " (0, + ) ) and a

sequence{ yN } !
N =1 such that

%N " N, (" < |yN ! L | & * n " N, yN = xn).

(b) Show that no subsequence of{ yN } !
N =1 can converge toL.

(c) Prove that { yN } !
N =1 has a subsequence that converges.

(d) Prove that any subsequence of{ yN } !
N =1 is a subsequence of{ xn} !

n=1 .

(e) Find a contradiction and conclude the result.

6. Let { an} !
n=1 be an increasing sequence and{ bn} !

n=1 be decreasing sequence. Suppose
that for any n " N \ { 0} we havean < bn.

(a) Show that
# !

n=1 [an, bn] is nonempty.
Hint: Construct a sequence{ xn} !

n=1 with the property that xn " [an, bn] for any
n " N. To conclude, recall that each interval [an, bn] is sequentially compact.

(b) Suppose thatan ! bn # 0. Prove that
# !

n=1 [an, bn] = { x} for somex " R.

5



Math 4031 - Advanced Calculus I
Instructor: Dr. Cristopher HERMOSILLA

Louisiana State University - Spring 2016

Week 6: Cardinality of some subsets of R

We Þnish the study of Real numbers with the notion of Cardinality. We now present a formal
exposition of the ideas we have described in the short overview of Set Theory. For this purpose,
we might need to remember some notions of functions.

Recall that a function f : A ! B is a rule that associates anya " A with a unique element
in B , usually denoted byf (a). Furthermore, we say that f : A ! B is bijective if for any
b " B there is a uniquea " A such that f (a) = b. In practice, we divide the deÞnition of a
bijection in two part, the injective and surjective properties:

¥ f : A ! B is injective provided that f (a1) = f (a2) =# a1 = a2.

¥ f : A ! B is surjective provided that for anyb " B there is a " A such that f (a) = b.

For any bijective function f : A ! B , there is a unique function,g : B ! A such that

$a " A, g %f (a) := g(f (a)) = a & $b " B, f %g(b) := f (g(b)) = b.

The function g : B ! A is called theinverse function of f , and it is denoted byf ! 1.

6.1 Cardinality of a set

Recall that we have said that a setA is Þnite if there isn " N such that A has exactly n
(di! erent) elements. The numbern was called thecardinality of A and was denoted by|A|.
In particular, this means that any Þnite set that hasn elements has the same cardinality than
the set

An := { 1, 2, . . . , n} .

If we look this from another point of view, we can also remark that a Þnite setA hasn elements
if and only if there is a one-to-one relation betweenA and the set An deÞned above. This
one-to-one relation is the process of counting.

This idea yields to the following deÞnition which applies to inÞnite sets too.

DeÞnition 6.1. Let A, B be two given sets, we say thatA and B have the same cardinality if
there is a bijective functionf : A ! B . Under these circumstances, we just write|A| = |B |.

Let us come back to the case of Þnite sets. Our intuition says that we can assign an order
to the elements ofA, say a1, a2, . . . , an. Considering this order, we deÞne the function
f : A ! An via

f (ak) = k.

1
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Let us check that |A| = |An| according to DeÞnition 6.1. On the one hand we see that
f : A ! An is injective, because the counting process has assigned a unique element to thekth

position. On the other hand,f : A ! An is surjective, because any of then possible positions
in the order has been Þlled with an element ofA.

6.2 Countable sets

We now introduce a formal deÞnition of acountably inÞnite set.

DeÞnition 6.2. Let A be a given set, we say thatA is countably inÞnite if |A| = |N|, that is,
there is a bijection betweenA and N. In this case, we also write|A| = " 0.

Remark 6.1. Note that according to DeÞnition6.2, any sequence is a countably inÞnite set.
To see this, it is enough to use the functionf : { xn} !

n=1 ! N deÞned via

f (xn) = n # 1.

Clearly, this function is a bijection between{ xn} !
n=1 and N. Moreover, the converse is also

true, that is, any countably inÞnite set can be described as a sequences. To see this, suppose
that f : A ! N is a bijection, then it is enough to deÞne

xn = f " 1(n # 1).

We are now in position to prove that Z is countably inÞnite, that is, it has the same
cardinality than N.

Theorem 6.1. The set of IntegersZ is countably inÞnite.

Proof. Let us consider the functionf : Z ! N deÞned via

f (z) =

!
2 áz if 0 $ z,

2 á(# z) # 1 if z < 0.

Let us divide the proof into three steps:

1. We Þrst need to check thatf : Z ! N is well-deÞned, that is,f (z) %N for any z %Z.
Let z % Z and suppose that 0$ z, then by deÞnition z % N and sof (z) = 2 áz % N.
Assume now thatz < 0, then by deÞnition# z %N and 1$ # z. This means that 2á(# z)
is a Natural number greater than or equal to 2, and sof (z) = 2 á(# z) # 1 is a Natural
number greater than or equal to 1. Hence, the function is well-deÞned.

2. We now show thatf : Z ! N is injective. From the preceding part, we have that if 0$ z,
then f (z) is even, and ifz < 0, then f (z) is odd. Hence, since any Natural number is
either even or odd, iff (z1) = f (z2) we get that z1 = z2, and sof : Z ! N is injective.

3. We Þnally prove that f : Z ! N is surjective. Let n % N and suppose thatn is even,
that is, there is k %N such that n = 2 ák. But, since N & Z we have that f (k) = n. In
on the other hand,n is odd, there isk %N \ { 0} such that n = 2 ák # 1, which means
that n = 2 ák # 1 = f (# k). Since,# k %Z we get that f : Z ! N is surjective, and this
completes the proof.

2
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6.2.1 The Cantor-Schr¬oeder-Bernstein Theorem and consequences

When two setsA and B are given, it may be too diÞcult to construct a bijection between both
sets to prove that they have the same cardinality. Instead, it may be easier to contruct two
injections, one fromA into B and another fromB into A. It turns out that there is a powerful
result, called the Cantor-Schr¬oeder-Bernstein Theorem , that says that both strategies
are equivalent. We state the theorem, however we donÕt provide a proof; we refer the interested
reader to [1, Theorem 3.1] for details.

Theorem 6.2. Let A and B be two given sets. Suppose that there are two function,f : A ! B
and g : B ! A, both injective. Then, there is a bijective functionh : A ! B .

We have claimed that the set of Rational numbers is countably inÞnite. Nevertheless, it
proof is slightly more complicated than forZ and it requires some intermediate results.

We introduce the Cartesian productN" N as the collection all elements that can we written
as {{m}, {m, n}} for somen, m # N. Formally speakingN " N is a subset ofP(N), so it is
a set in the sense we have deÞned at the beginning of the course. For sake of notation, we
denote an element ofN " N by (m, n).

Lemma 6.1. The setN " N is countably inÞnite.

Proof. By the Cantor-Schr¬oeder-Bernstein Theorem (Theorem6.2), we only need to exhibit
the existence of an injective functionf : N " N ! N, because it is clear that the function
g : N ! N " N deÞned viag(n) = ( n, n) is an injection.

Let us consider the functionf : N " N ! N deÞned via

f (m, n) = 2 m · (2 · n + 1) $ 1.

It is clear that f (m, n) # N, so we need to prove that it is injective. Take two elements in
N " N, say (m1, n1) and (m2, n2), such that (m1, n1) %= ( m2, n2), that is,

m1 %= m2 & n1 %= n2.

Suppose by contradiction thatf (m1, n1) = f (m2, n2), then

2m1 · (2 · n1 + 1) = 2 m2 · (2 · n2 + 1) .(6.1)

Suppose thatm1 = m2, then by (6.1) we get 2· n1 + 1 = 2 · n2 + 1 and son1 = n2, which leads
to a contradiction. Assume now thatm1 %= m2. Without loss of generality, we can suppose
that m1 < m 2. But, by ( 6.1) we get

2 · n1 + 1 = 2 m2! m1 · (2 · n2 + 1) ,

which is impossible because the left handside is odd but the right handside is even because
2m2! m1 is a multiple of 2. This case also leads to a contradiction, sof (m1, n1) = f (m2, n2)
can not be true, andf : N " N ! N must be injective, which Þnishes the proof.

Remark 6.2. Lemma 6.1 can be proved without using the Cantor-Schr¬oeder-Bernstein The-
orem. It can be proved directly that the functionf : N " N ! N given in the proof is also
bijective. We leave this as exercise for the reader.
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We are now in position to prove that the set of Rational numbers is countable.

Theorem 6.3. The set of Rational numbersQ is countably inÞnite.

Proof. Assume that any Rational number can be written aspq wherep ! Z and q ! N \ { 0} .
Then we consider the functionf : Q " N # N deÞned via

f
!

p
q

"
=

#
(2 áp, q) if 0 $ p,

(2 á(%p) %1, q) if p < 0.

It is clear that f : Q " N # N is a well-deÞned function, which in addition is injective. To
conclude the proof, we need to show that there is an injection fromN # N into Q, then by
Theorem6.2 and Lemma6.1 the result will follow.

On the one hand, by Lemma6.1, there is a bijection betweenN # N and N. On the other
hand, there is a canonical injection fromN into Q, that is, n &" n. Then, composing both
functions we obtain an injection fromN# N into Q. Then, in the light of the Cantor-Schr¬oeder-
Bernstein Theorem (Theorem6.2), we get that there is a bijection betweenN # N and Q, and
so Q must be countably inÞnite because by Lemma6.1, N # N is countably inÞnite.

6.3 Uncountable sets

We say that a set isuncountable if it is inÞnite and not countably inÞnite. This yields to
the idea that every uncountable set has, in some sense, more elements thatN. Recall that
we have said that two sets have the same cardinality if there is a bijection between them.
Consequently, if two sets have di! erent cardinality, no injection from one of the set in the
other can be surjective.

DeÞnition 6.3. Let A, B be two given sets, we say that the cardinality ofA is less than the
cardinality of B if there is an injective function f : A " B , but there is no bijection between
A and B. Under these circumstances, we just write|A| < |B |.

We now evoke the fact that if A is a Þnite set, then|P(A)| = 2 |A |, which means that
|A| < |P (A)|. This fact can be generalized to inÞnite set and it is known as theCantorÕs
Theorem . This results reads as follows.

Theorem 6.4. Let A be a given, then|A| < |P(A)|. In particular, P(N) doesnÕt have the
same cardinality thanN and it is an uncountable set.

Proof. Let f : A " P(A) deÞned via

f (x) = { x} .

It is clear that f : A " P(A) is injective. So to conclude we need to show that there is no
bijection betweenA and P(A). Suppose by contradiction that there isg : A " P(A) bijective.
Let us deÞne

B = { x ! A | x /! g(x)} .

4
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It is clear that B is a subset ofA. Moreover, sinceg : A ! P(A) is surjective, there isb " A
such that g(b) = B. We now have two possibilities forb, either b " B or b /" B .

On the one hand, if b " B , then b /" g(b), but g(b) = B, so b /" B , which leads to a
contradiction. On the other hand, if b /" B , we get that b /" g(b), which means that b " B
and we get a contradiction too. Therefore, such functiong : A ! P(A) can not exist and the
conclusion follows.

6.3.1 Cardinality of the set of Real numbers

The set of Real numbers is one of the most important examples of uncountable sets. There
are several ways to prove that this set in uncountable, but the one we present is based on the
CantorÕs Theorem.

We begin by noting that R has the same cardinality than the interval (0, 1); too see this,
it is enough to consider the bijectionf : R ! (0, 1) deÞned via

f (x) =
exp(x)

exp(x) + 1
.

So, the fact that |R| = |P(N)| will be a direct consequence of the following result.

Theorem 6.5. P(N) has the same cardinality than the interval(0, 1).

Proof. Let us construct two injections, one fromP(N) into (0, 1) and another from (0, 1) into
P(N) . Then the conclusion will follow from the Cantor-Schr¬oeder-Bernstein Theorem.

1. Recall that each Real numberx " (0, 1) has a unique decimal representation

x = 0.n1n2n3n4 . . .

where eachnk " { 0, 1, . . . , 8, 9} and there is no repeating sequences of 9!s at the end.
We deÞnef : (0, 1) ! P(N) via

f (x = 0.n1n2n3n4 . . .) = { n1 á10, n2 á102, n3 á103, . . .} =
"!

k=1

{ nk á10k} .

It is easy to see thatf : (0, 1) ! P(N) is well-deÞned, so we need to prove that it is
injective. Let x = 0.n1n2n3n4 . . . and y = 0.m1m2m3m4 . . ., both di! erent elements of
(0, 1). Let k " N be the Þrst index such thatnk #= mk. This index exists, otherwise
x = y. In particular, nk á10k /" f (y), so f (x) #= f (y), which means thatf : (0, 1) ! P(N)
is injective.

2. Let us now construct an injection fromP(N) into (0, 1). Let A $ N, we consider the
sequence given by

xA
n :=

"
1 if n %1 " A,

0 otherwise.

5
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We consider the functiong : P(N) ! (0, 1) deÞned by

g(A) = 0 .1xA
1 xA

2 xA
3 . . . = 0.1 +

!!

n=1

xA
n á10" (n+1) .

We readily see thatg : P(N) ! (0, 1) is well-deÞned. Furthermore, it is also injective.
Indeed, let A, B " P(N) with A #= B. Suppose that there isp " A \ B . In particular,
xA

p+1 = 1 and xB
p+1 = 0, so g(A) #= g(B), because each element in (0, 1) admits a unique

decimal representation. Therefore,g : P(N) ! (0, 1) is injective and by the Cantor-
Schr¬oeder-Bernstein Theorem the conclusion follows.

6.4 Exercises

1. Prove that the set of even and odd Natural numbers are countably inÞnite.

2. Let a, b" R with a < b. Prove that the intervals [0, 1] and [a, b] have the same cardinality.

3. Prove that the intervals [0, 1], [0, 1), (0, 1] and (0, 1) have the same cardinality.

4. Prove that if A and B are countable sets, thenA $ B is countably inÞnite. Can the set
of Irrational numbers be countably inÞnite?

5. The aim of this problem is to prove that, ifX is a countably inÞnite set andA % X is
inÞnite, then A is countably inÞnite. To do so, follow the next steps:

(a) Show that it is enough to prove the result for the particular caseX = N.

(b) Show that any nonempty subsetB of N has a unique minimum.

(c) Consider the functionf : N ! A deÞned recursively via

f (0) = min( A) and f (n + 1) = min( A \ { f (0), . . . , f (n)} ).

Show that the function is well-deÞned (the minimum are attained) and that

&n " N, f (n) < f (n + 1) ' n ( f (n).

(d) Prove by contraposition that f : N ! A is injective.

(e) Prove by contradiction that f : N ! A is surjective.
Hint: Suppose Þrst thata < f (n) for somen " N and consider the set

B = { n " N | a < f (n)} .

Show that f (n0) ( a for n0 := min( B) and get a contradiction. Finally, study the
case in whichf (n) < a for any n " N.
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Week 7: Continuous Real-valued functions:
Sequential deÞnition

We now begin the study of continuous Real-valued function. We might focus, unless otherwise
stated, on the case of functions deÞned on a bounded closed interval and whose values belong
to R. These functions will be generically denoted byf : [a, b] ! R. Furthermore, if the label
of the function is of little importance, we might also use the notationx "! f (x) to highlight
the expression that deÞnes the function.

Let us emphasize that several of the results discussed in the Þrst part of the course will be
applied, in particular those for sequence of Real numbers.

7.1 Limit of functions

The essential notion required to study the continuity of a function is thelimit of a function
at some point on [a, b].

DeÞnition 7.1. Let f : [a, b] ! R be a given function. We say thatL # R is the limit of f
at øx # [a, b] if for any sequence{ xn} !

n=1 contained in [a, b] that converges toøx, we have that
f (xn) ! L . We denote the limit off at øx by

lim
x" øx

f (x).

Let us consider the functionf (x) = xm deÞned on any interval of the form [a, b], where
m # N. We claim that limx" øx f (x) exists and equalsf (øx), regardless the values ofa, b or m.
To see this, we use an inductive argument:

¥ case m = 0: Under these circumstances,f (x) = 1 for any x # [a, b] and so clearly,
limx" øx f (x) = 1 for each øx # [a, b]. Indeed, for any sequence that converges to øx # [a, b]
we must havef (xn) = 1, which means that f (xn) ! 1.

¥ case m =$ m + 1: We assume that the limit of x "! xm at øx # [a, b] is øxm. By the
algebraic properties of the limit we know that ifxn ! øx and yn ! y, then xn áyn ! øx áy.
Let us take yn = xm

n and y = øxm, which is a suitable choice by the induction hypothesis.
Hence,xm+1

n = xn áxm
n ! øx áøxm = xm+1 . Therefore, the limit of the mappingx "! xm+1

at øx is øxm, and the conclusion follows by the induction principle.

1
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7.2 Continuous function

Suppose now that we want to compute the value of (
!

2)m for somem " N. We may agree
that, in practical terms, this value cannot be computed in an exact way although it can be
approximated. One way to do it, is to use the arguments exhibited above. We know that
for any sequence{ xn} !

n=1 we may take that converges to
!

2, we will get that xm
n can be as

close as we desire from (
!

2)m. If we now want to compute f (
!

2) for another function, it
would be very useful to have a similar property as above, that is, that the valuef (

!
2) can be

approximated by a sequence of terms of the formf (xn), wherexn #
!

2. When this happens
we say that f is continuous at øx =

!
2. In general terms we have the following deÞnition.

DeÞnition 7.2. Let f : [a, b] # R be a given function. We say thatf is continuous at
øx " [a, b] if the limit of f at øx exists and

lim
x" øx

f (x) = f (øx).

We say thatf is continuous, if it is continuous on each point on its domain[a, b].

In the light of the discussion above, we have that the mapx $# xm is continuous on any
interval [a, b] and for any m " N. It is also, easy to see thatx $# |x| is continuous.

Continuity is a property that can be conserved under several operations. The following
result is a direct consequence of Theorem 4.4 about algebraic combinations of sequences. We
leave the details of the proof as exercise for the reader.

Theorem 7.1. Let f : [a, b] # R and g : [a, b] # R be two given functions. Suppose thatf
and g are continuous atøx " [a, b]. Then f + g and f ág are continuous atøx. Furthermore, if
g(øx) %= 0, then f /g is also continuous atøx.

Likewise, continuity is preserved under the composition of functions.

Theorem 7.2. Let f : [a, b] # R and g : [c, d] # R be two given functions. Suppose that
f (x) " [c, d] for any x " [a, b]. If f is continuous at øx " [a, b] and g is continuous at f (øx),
then g &f : [a, b] # R is continuous at øx.

Proof. Let { xn} !
n=1 be a sequence contained in [a, b] that converges to øx. Sincef is continuous

at øx, we get that yn := f (xn) # f (øx). Now, sincef (x) " [c, d] for any x " [a, b] we have that
{ yn} !

n=1 is a sequence contained in [c, d] that converges tof (øx) " [c, d]. Therefore, sinceg is
continuous at f (øx), we get that

g &f (xn) = g(f (xn)) = g(yn) # g(f (øx)) = g &f (øx).

Remark 7.1. Given two continuous functionsf : [a, b] # R and g : [a, b] # R, the maps
x $# max{ f (x), g(x)} and x $# min{ f (x), g(x)} are also continuous on[a, b]. Indeed, this is
a consequence of Theorem7.1 and Theorem7.2. To see this, it is enough to check that both
maps can be written as the sum and composition of continuous functions in the following way

max{ f (x), g(x)} =
1
2

(f (x) + g(x) + |f (x) ' g(x)|) ,

min{ f (x), g(x)} =
1
2

(f (x) + g(x) ' |f (x) ' g(x)|) .
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7.3 The range of a continuous function

We discuss now about the shape of the range of a continuous function. We recall that the
range of a functionf : [a, b] ! R is the set deÞned by

f ([a, b]) := { y " R | #x " [a, b], y = f (x)} .

Our goal now is to show that is a bounded closed interval. This result will be a consequence
of two important theorems for continuous functions, namely, the Intermediate Value Theorem
and the Weierstrass Theorem for Extremal Points.

7.3.1 The Intermediate Value Theorem

This result says that f ([a, b]) is actually an interval and reads as follows.

Theorem 7.3. Consider a continuous functionf : [a, b] ! R. If c, d " f ([a, b]) with c < d,
then [c, d] $ f ([a, b]).

Proof. Let y " (c, d), we need to prove that there isx " [a, b] such that y = f (x). To do this,
we use the same argument we have used to prove the Bolzano-Weierstrass Theorem.

Let a0, b0 " [a, b] such that c = f (a0) and d = f (b0), and deÞnee0 = 1
2(a0 + b0). Without

loss of generality we assume thata0 < b0. We know then that either y % f (e0) or f (e0) < y .
So we set

a1 =

!
a0 if y % f (e0)

e0 otherwise
and b1 =

!
e0 if y % f (e0)

b0 otherwise

Note that in any case we havef (a1) % y and y % f (b1).
We deÞne then inductivelyen = 1

2(an + bn) and set

an+1 =

!
an if y % f (en)

en otherwise
and bn+1 =

!
en if y % f (en)

b otherwise

Thus, in this way we have constructed two sequences{ an} !
n=1 and { bn} !

n=1 , having the following
features:

¥ { an} !
n=1 is increasing and bounded above byb.

¥ { bn} !
n=1 is decreasing and bounded below bya.

¥ bn & an = 1
2n (b& a) for any n " N \ { 0} .

¥ f (an) % y and y % f (bn) for any n " N \ { 0} .

The Þrst three points implies that { an} !
n=1 and { bn} !

n=1 converges to the same limit, some
x " [a, b]. The last point yields, thanks to the continuity of f , to f (x) % y and y % f (x), from
where we deduce thaty = f (x), and thus y " f ([a, b]).
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7.3.2 The Weierstrass Theorem for Extremal Points

We have seen thatf ([a, b]) must be an interval (by the Intermediate Value Theorem), we now
prove that it must be bounded. Actually, we prove something stronger, that the max(f ([a, b]))
and min(f ([a, b])) are well deÞned, for any continuous function deÞned on a closed bounded
interval. The points where max(f ([a, b])) or min( f ([a, b])) are attained are called theextremal
points of f .

DeÞnition 7.3. Let f : [a, b] ! R be a given function. We say thatx! " [a, b] is a minimum
point of f on [a, b] if

#x " [a, b], f (x! ) $ f (x).

Similarly, we say thatx! " [a, b] is a maximum point of f on [a, b] if

#x " [a, b], f (x) $ f (x! ).

Example 7.1. Consider the function x %! |x| deÞned on[&1, 1]. Since 0 $ |x| for any
x " [&1, 1] and |x| = 0 if and only if x = 0, we get thatx! = 0 is the unique minimum point
of the function on [&1, 1]. On the other hand, since|x| $ 1 for any x " [&1, 1] and |x| = 1 if
and only if x = 1 or x = &1, we get thatx!

1 = 1 and x!
2 = &1 are both maximum points of the

function on [&1, 1].

Theorem 7.4. Any continuous function f : [a, b] ! R has a minimum and a maximum point
on [a, b].

Proof. m = inf {f (x) | x " [a, b]}, then there is a sequence{xn}"
n=1 contained in [a, b] such that

f (xn) ! m. By the Bolzano-Weierstrass Theorem, that sequence has a subsequence{xnk }"
k=1

that converges to somex! " [a, b]. But, by the continuity of f , the sequence whose terms are
f (xnk ) converges tof (x! ). However, {f (xnk )}"

k=1 is a subsequence of{f (xn)}"
n=1 , so it must

converge to the same limit, which means thatf (x! ) = m, and so the inÞmum is attained at
x! and so

#x " [a, b], f (x! ) $ f (x).

Using similar arguments, we can provide the existence of a maximum pointx! " [a, b]. We
leave the details to the reader, and so the proof is complete.

We are now in position to prove that the range of a continuous function deÞned on a
bounded closed interval, is a bounded closed interval as well.

Theorem 7.5. For any continuous functionf : [a, b] ! R, there are c, d " R with c < d such
that f ([a, b]) = [ c, d].

Proof. Let c = min( f ([a, b])) and d = max( f ([a, b])). Thanks to Theorem (7.4) these are
well-deÞned Real numbers.

On the one hand, by deÞnition we get that for anyx " [a, b], c $ f (x) and f (x) $ d, which
leads to f ([a, b]) ' [c, d]. On the other hand, sincec, d " f ([a, b]) and c < d, by Theorem 7.3
we get that [c, d] ' f ([a, b]). Therefore, f ([a, b]) = [ c, d] and the proof is complete.
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7.4 Continuity of the inverse function

One of the consequences of Theorem7.6 is that, given a continuous function,f : [a, b] ! R
the map g : [a, b] ! [c, d] deÞned via

g(x) := f (x), for any x " [a, b]

is surjective, wherec, d " R are such that [c, d] = f ([a, b]). Hence, if f : [a, b] ! R is also
injective we get that g : [a, b] ! [c, d] is a bijection and its inverse functiong! 1 : [c, d] ! [a, b]
is well-deÞned. Gathering all these facts, we can deÞne a unique functionf ! 1 : [c, d] ! R so
that

#x " [a, b], f ! 1 $ f (x) = x and #y " [c, d], f $ f ! 1(y) = y.

For sake of deÞnition, we call the functionf ! 1 : [c, d] ! R the inverse function of f .
We now prove that the inverse function of a continuous and injective map is also continuous.

Theorem 7.6. Let f : [a, b] ! R be a continuous and injective function, and letc, d " R such
that [c, d] = f ([a, b]). Then, f ! 1 : [c, d] ! R, the inverse functionf , is continuous on[c, d].

Proof. Let y " [c, d] and take a sequence{ yn} "
n=1 contained in [c, d] that converges toy. By

deÞntion, there arex, x1, x2, . . . " [a, b] for which y = f (x) and yn = f (xn) for any n " N \ { 0} .
Note as well that f ! 1(y) = x and f ! 1(yn) = xn for any n " N \ { 0} . So, to prove the
continuity of f ! 1 at y we need to prove thatxn ! x. To do so, we show that{ xn} "

n=1 has a
unique accumulation point, namelyx, and since itÕs bounded, in the light of Theorem 5.3 we
obtain that xn ! x.

Let { xnk } "
k=1 a subsequence of{ xn} "

n=1 that converges to some øx " [a, b]. By the continuity
of f on [a, b] we get that f (xnk ) ! f (øx) ask ! + %. However, since{ f (xnk )} "

k=1 a subsequence
of { f (xn)} "

n=1 and f (xn) = yn ! y = f (x), by the uniqueness of the limitf (x) = f (øx). Finally,
sincef is injective, we must havex = øx, and so the conclusion follows.

7.5 Exercises

1. Let f : [&1, 1] ! R be a function that satisÞes

f (x) ' 0 if x " [&1, 0] and 1' f (x) if x " (0, 1].

Determine whetherf is continuous atx = 0.

2. Let f : [a, b] ! R be a continuous function. Show that for anye " R, the set

f ! 1(e) := { x " [a, b] | f (x) = e}

is closed.

3. Let a " (0, %) and consider a functionf : [&a, a] ! R that satisÞes

#x, y " [&a, a], #! " R, ! x + y " [&a, a] =( f (! x + y) = ! f (x) + f (y).

Prove that f is continuous atx = 0, and then show that it is also continuous on [&a, a].
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4. We say that a function f : [a, b] ! R has a Þxed point if there is x " [a, b] such
that f (x) = x. Prove that if f is continuous on [a, b] such that a = min( f ([a, b])) and
b= max( f ([a, b])), then f has a Þxed point.

Hint: Study the sign of the functionx #! f (x) $ x.

5. Let f : [a, b] ! R be a function that satisÞes:

(1) For any [a0, b0] % [a, b], if c, d " f ([a0, b0]) with c < d, then [c, d] % f ([a0, b0]).

(2) For any e " R, the set f ! 1(e) := { x " [a, b] | f (x) = e} is closed.

The aim of this problem is to demonstrate thatf is continuous on [a, b]. To do so, assume
by contradiction that f is not continuous at somex " [a, b] and follow the next steps:

(a) Show that there are! " (0, + & ) and a sequence{ xn} "
n=1 contained in [a, b] that

converges tox so that

' n " N \ { 0} , ! < |f (xn) $ f (x)|.

(b) Prove using condition (1) that for anyn " N \ { 0} there is yn " [a, b] such that

|yn $ x| ( |xn $ x| and |f (yn) $ f (x)| = ! .

(c) Prove for anyn " N \ { 0} either yn " f (f (x) + ! ) or yn " f (f (x) $ ! ). Finally, get
a contradiction using condition (2) and conclude.

6. Let f : [a, b] ! R be a continuous function. Show that there arex#, x# " [a, b] such that

f (x#) (
f (x1) + f (x2)

2
( f (x#), for any x1, x2 " [a, b].

Using this, prove that for anyx1, x2 " [a, b] there is x " [a, b] such that

f (x) =
f (x1) + f (x2)

2
.

7. Let m " N \ { 0} be a Þxed Natural number and consider the functionf : [0, 1] ! R
deÞned via

f (x) = xm, for any x " [0, 1].

Prove that its inverse, denoted m
) : [0, 1] ! R, is well-deÞned and continuous on [0, 1].
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Week 8: Continuous Real-valued functions:
topological deÞnition

We continue the study of continuous Real-valued function using another point of view. So far,
we have used sequences to deÞne the continuity of a function. We now present a deÞnition
based on topological notions, which in this setting means based on open intervals around a
point øx ! R that have the following form

(øx " r, øx + r ) := { x ! R | øx " r < x # x < øx + r } = { x ! R | |x " øx| < r }(8.1)

wherer ! (0, + $ ). The set (8.1) is called theopen interval centered at øx of radius r .

8.1 Topological deÞnition of continuity

The characterization of the continuity we introduce now is written in terms of! " " .

Theorem 8.1. Let f : [a, b] % R be a given function. Then,f is continuous at øx ! [a, b] if
and only if

&! ! (0, + $ ), ' " ! (0, $ ), &x ! [a, b], |x " øx| < " =( |f (x) " f (øx)| < ! .(8.2)

Proof. We Þrst see the implication () =), that is, suppose that (8.2) holds. Let { xn} !
n=1 be an

arbitrary sequence contained in [a, b] that converges to øx, we need to prove thatf (xn) % f (øx).
Let ! ! (0, + $ ) be Þxed but arbitrary. Let us consider" ! (0, + $ ) given by (8.2) and

associated with! . Sincexn % øx, there is N ! N such that |xn " øx| < " for any n ! N with
N * n. Hence, by (8.2) we have that |f (xn) " f (øx)| < ! , or in other words, f (xn) % f (øx).

For the other implication we argue by contradiction. Assume thatf is continuous at øx and
that ( 8.2) is false. Then, there is! ! (0, + $ ) such that for any " ! (0, + $ ) there is x ! [a, b]
such that

|x " øx| < " # ! * |f (x) " f (øx)|.

By taking, " = 1
n we can produce a sequence that converges to øx (by the condition |xn " øx| < 1

n )
and such that ! * |f (xn) " f (øx)|. Since! ! (0, + $ ) doesnÕt depend on the sequence nor on
" , the latter implies that { f (xn)} !

n=1 cannot converge tof (øx), which yields to a contradiction.
Therefore, (8.2) holds true and the theorem has been proved.

1
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Remark 8.1. Let øx ! (a, b) and ! ! (0, + " ) be given. SetB = ( f (øx) # ! , f (øx) + ! ), that is,
the open interval centered atf (øx) of radius ! . Then, condition (8.2) says that there is another
open interval A = (øx # ", øx + "), centered atøx of radius " , such that

A $ f ! 1(B ) := { x ! [a, b] | f (x) ! B } .

Hence, from a topological point of view, a continuous function is a function, for which the
pre-image of an open interval centered atf (øx) contains an open interval centered atøx.

In the casesøx = a or øx = b, the same is true but with the slight modiÞcation that, instead
of the open intervalA = (øx # ", øx + "), we need to consider the open intervals relative to[a, b]

[a,øa + ") % (øx # ", b].

ItÕs important to remark that in (8.2), " depends in general on! and the interval [a, b], we
will see later that " can always be taken independently of øx. LetÕs see some example:

¥ Take f (x) = xm for somem ! N deÞned on any interval [a, b]. Take øx ! [a, b] Þxed.

Ð If m = 0, we get |f (x) # f (øx)| = 0, so (8.2) holds immediately for any" ! (0, + " ).
In this case," doesnÕt depend on! , øx nor the interval [a, b].

Ð If m = 1, we have |f (x) # f (øx)| = |x # øx|, so taking ! = " in (8.2) the condition
holds. In this case," depends only on! .

Ð For the casem ! N \ { 0, 1} we use the fact that

xm # øxm = ( x # øx)(xm! 1 + xm! 2øx + xm! 3øx2 + . . . + x2øxm! 3 + xøxm! 2 + øxm! 1).

Note that for any x ! [a, b], including øx, we have|x| & max{| a|, |b|} . Hence,

|xm! 1 + xm! 2øx + . . . + xøxm! 2 + øxm! 1| & |x|m! 1 + |x|m! 2|øx| + . . . + |x||øx|m! 2 + |øx|m! 1|

& m ámax{| a|, |b|} m! 1.

Therefore, combining these inequalities we

|xm # øxm| & |x # øx)| ám ámax{| a|, |b|} m! 1.

So,
" =

!
m ámax{| a|, |b|} m! 1

works for (8.2). Note that in this case" depends on! and the interval [a, b]. Note
that " decreases its values as long as|a| or |b| increase their values.

¥ Consider a functionf : [a, b] ' R that satisÞes

( x, y ! [a, b], ( # ! R, #x + y ! [a, b] =) f (#x + y) = #f (x) + f (y).(8.3)

Let see that (8.2) holds at øx ! [a, b]. Assume that a *= 0, otherwise useb instead ofa.
Note that (8.3) yields to

f (x) = f
!

x # øx
a

áa + øx
"

=
x # øx

a
áf (a) + f (øx).(8.4)

2



Math 4031 - Spring 2016 Continuous functions

Hence,

|f (x) ! f (øx)| = |x ! øx| á

!
!
!
!
f (a)

a

!
!
!
! .

If on the one hand,f (a) = 0 we get that the right-hand side equals zero, in which case,
any ! " (0, + # ) makes (8.2) to hold. On the other hand, if f (a) $= 0, then itÕs enough
to take ! = ! á|a|

|f (a)| and (8.2) will hold.

In the latter case, we can prove that condition (8.3) implies that f (x)
x is constant for any

x " [a, b] \ { 0} . Indeed, this comes from evaluating (8.4) at øx = a; if a = 0 the same arguments
work with b instead ofa. In particular, we get that there is c " [0 + # ), which doesnÕt depend
on øx such that f (a) = c áa. This means that in the last example we have

%x, y " [a, b], |f (x) ! f (y)| & c á |x ! y|.(8.5)

Functions that satisÞes (8.5) receive a special name, they are calledLipchitz continuous .
Moreover, the non-negative Real numberc in (8.5) is called a Lipschitz constant off on [a, b].

It is worthy to note that Lipschitz continuous functions, are actually continuous maps, and
have the remarkable property that! in (8.2) can be always taken independently of øx. In fact,
! = " á1

c always works, wherec " R is a positive Lipschitz constant off on [a, b].
All the examples we have seen so far are actually Lipschitz continuous function, however,

there are functions that donÕt have this property. For instances, the functionx '(
)

x deÞned
on [0, 1] is not Lipschitz continuous. Indeed, if that were the case, there would bec " (0, + # )
so that

%x, øx " [0, 1], |
)

x !
)

øx| & c á |x ! øx|.

Evaluating this at øx = 0 we get
)

x & cáx for any x " (0, 1]. Since, by deÞnitionx =
)

x á
)

x,
we get then that x & c2 áx2, so dividing by x we Þnally get 1& c2 áx. We know that the
function x '( c2 áx is continuous atx = 0, so letting x goes to 0 we Þnally get 1& 0, which
cannot be.

Although the x '(
)

x on [0, 1] is not Lipschitz continuous, it does satisÞes an interesting
property (we leave the details of the inequality as exercise for the reader):

%x, y " [0, 1], |
)

x !
)

y| &
"

|x ! y|.

Let us point out that x '(
)

x is then continuous on [0, 1]. Indeed, for any" " (0, + # ), we
just need to take! = "2 and (8.2) will be true for any øx " [0, 1]. Moreover, any function that
satisÞes a similar inequality is calledH¬older continuous . More precisely, given# " Q* (0, 1)
we say that a functionf : [a, b] ( R is #-H¬older continuous if

%x, y " [a, b], |f (x) ! f (y)| & c á |x ! y|" .(8.6)

The notation x" for x " [0, + # ) stands for the Real numberq
)

xp, wherep " Z and q " N\{ 0}
are so thatqá# = p. In particular, we say that x '(

)
x is 1

2-H«older continuous.
The functions we have reviewed have the particularity that, to prove their continuity prop-

erties using (8.2), we have provided a! " (0, + # ) that doesnÕt depend on the point øx we are
studying the continuity. So to speak, we have taken the parameter! uniformly on the interval

3
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[a, b]. This fact, is actually general for function deÞned on bounded closed intervals; it is not
necessarily true if the domain is not bounded. Therefore, we say that a functionf : [a, b] ! R
is uniformly continuous on [a, b] provided that

" ! # (0, + $ ), %" # (0, + $ ), " x, y # [a, b], |x & y| < " =' |f (x) & f (y)| < ! .(8.7)

It is clear that a uniformly continuous function is continuous. We now will prove that the
converse is also true for function deÞned on closed bounded intervals.

Theorem 8.2. Let f : [a, b] ! R be a given continuous function. Then,f is uniformly
continuous on[a, b].

Proof. Assume by contradiction that (8.7) doesnÕt hold. Then, there is! # (0, + $ ) and two
sequence{ xn} !

n=1 and { yn} !
n=1 contained in [a, b] such that

" n # N \ { 0} , |xn & yn| <
1
n

and ! ( |f (xn) & f (yn)|.

By the Bolzano-Weierstrass Theorem,{ xn} !
n=1 and { yn} !

n=1 have converging subsequences, say
to øx and øy, respectively. We can assume that both subsequences have the same numeration,
that is, xnk ! øx and ynk ! øy ask ! + $ . Sincexn & yn ! 0 asn ! + $ , then xnk & ynk ! 0 as
k ! + $ , which means that øx = øy. Moreover, by continuity of f , we get that f (xnk )& f (ynk ) !
f (øx) & f (øy) = 0, because øx = øy, but this implies that ! ( 0, which cannot be. We conclude
then that f is uniformly continuous on [a, b].

8.2 Exponential functions

We now present a function that plays a fundamental role in Calculus, the so-called exponential
function exp : R ! R deÞne via

exp(x) = lim
n" + !

!
1 +

x
n

" n
, for any x # R.

Sometimes, it is also denoted byx )! ex . Let us begin the study by proving that the function
is well-deÞned, which in this case means that, givenx # R Þxed the limit of { f n(x)} !

n=1 exists
and it is a Real number, where

f n(x) :=
!

1 +
x
n

" n
.

¥ For any n # N and h # (&1, + $ ), we have

1 + n áh ( (1 + h)n.(8.8)

To see we use induction. The casen = 0 is trivial, let us just focus on the inductive step.
Suppose that the result is true forn # N, then

1+( n +1) áh ( 1+( n +1) áh+ n áh2 = (1+ n áh) á(1+ h) ( (1+ h)n á(1+ h) = (1+ h)n+1 .
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¥ Let N := max{ n ! N | x > " N } , then { f N + n(x)} !
n=1 is increasing. Indeed, note Þrst

of all that for any n ! N \ { 0} , we havef N + n(x) > 0. Hence, forn ! N \ { 0} Þxed we
obtain

f N + n+1 (x)
f N + n(x)

=
!

1 "
x

(N + n + 1)( N + n + x)

" N + n+1

á
!

1 +
x

N + n

"
.

On the other hand, x
(N + n+ x) < 1, so by (8.8) we get

1 =
!

N + n
N + n + x

"
á
!

N + n + x
N + n

"
=

!
1 "

x
N + n + x

"
á
!

1 +
x

N + n

"
#

f N + n+1 (x)
f N + n(x)

¥ For any n ! N \ { 0} , if x < 1 we have

f N + n(x) =
!

N + n + x
N + n

" N + n

=

#
1

1 " x
N + n+ x

$ N + n

.

Since x
N + n+ x < 1 we get by (8.8) that

f N + n(x) #
1

1 " x
.

Therefore,{ f n(x)} !
n=1 is bounded providedx < 1.

¥ For any n ! N \ { 0} , if 1 # x, by the Archimedean property, there ism ! N so that
x
m < 1, and since{ f n(x)} !

n=1 is increasing we have

f N + n(x) # f má(N + n)(x) =
!

1 +
x

m á(N + n)

" má(N + n)

#
!

1
1 " x

m

" m

.

Thus, { f n(x)} !
n=1 is also bounded above if 1# x.

Gathering all there a! rmations we get that, for any x ! R, the sequence{ f N + n(x)} !
n=1 is

increasing and bounded below, so it must converge to some positive Real number. It is also
clear that the limit of { f N + n(x)} !

n=1 converges, then{ f n(x)} !
n=1 also converges, which means

that x exp(x) is well deÞned.

8.3 Exercises

1. Let f : [a, b] $ R be a continuous function. Suppose thatf (øx) ! (0, + %). Show that
there is ! ! (0, + %) such that

&x ! (øx " ! , øx + ! ) ' [a, b], f (x) ! (0, + %).

2. Let f : [a, b] $ R be a Lipschitz continuous function with Lipschitz constantc ! (0, 1).
Prove that f has a unique Þxed point, that is, there is a uniquex ! [a, b] such that
f (x) = x. Hint: Consider a sequence deÞned inductively as follows:

&n ! N \ { 0} , xn+1 = f (xn),

wherex1 ! [a, b] is any point. Show that this sequence is a Cauchy sequence.

5
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3. f : R ! R be a continuous function such that

" x, y # R, |x $ y| % |f (x) $ f (y)|.

The aim of this problem is to show thatf (R), the range off , equalsR.

(a) Prove that f (R) is a closed interval, that is, either [c, d], [c,+ & ), ($& , d] or R.

(b) Prove that for any x # R and y # (0, + & ) with x '= y we have

f (x + y) < f (x) ( f (x $ y) < f (x).

Hint: Assume the statement is false and Þnd a contradiction using the Intermediate
Value Theorem.

(c) Prove that the only possible option is thatf (R) equalsR.

4. Let f : (a, b) ! R be a function that is uniformly continuous on (a, b), that is, satisÞes
(8.7) when replacing [a, b] with ( a, b). Prove that there is a unique continuous function
g : [a, b] ! R such that

" x # (a, b), f (x) = g(x).

Hint: Study the existence of the limit of{ f (xn)} !
n=1 for any sequence contained in (a, b)

such that xn ! a or xn ! b.

5. The goal of this problem is to prove thatx )! exp(x) doesnÕt satisfy (8.7) when replacing
[a, b] with R, that is, it is not uniformly continuous on R.

(a) Prove using the deÞnition ofx )! exp(x) that it has the semi-group property ,
that is,

" x, y # R, exp(x + y) = exp( x) áexp(y).

Hint: Prove that if f n (x) :=
!
1 + x

n

"n
, then for some sequence{ zn} !

n=1 that con-
verges to zero, we have

1 $ zn %
f n(x + y)

f n(x) áf n(y)
%

1
1 + zn

(b) Show that exp(1)# [2, + & ) and that exp(n) = exp(1) n .

(c) Conclude using a contradiction argument and the previous parts.

6



Math 4031 - Advanced Calculus I
Instructor: Dr. Cristopher HERMOSILLA

Louisiana State University - Spring 2016

Week 9: Uniform convergence of Continuous
Real-valued functions

9.1 Pointwise convergence

We have deÞned the exponential function exp :R ! R via

exp(x) = lim
n! + "

!
1 +

x
n

" n
, for any x " R.

We have proved that the limit exists and it is a positive Real number. In other words, we have
shown that the sequence of functionf n : R ! R given by

f n(x) :=
!

1 +
x
n

" n

satisÞes the following property:

#x " R, f n(x) ! exp(x).

In this case we say thatf n converges pointwise to exp(á) on any interval [a, b]. In general
terms we have the following deÞnition.

DeÞnition 9.1. Let f : [a, b] ! R be a given function and{ f n} "
n=1 be a sequence functions

on [a, b], that is, f n : [a, b] ! R for each n " N \ { 0} . We say that f n converges pointwise to
f on [a, b] if

#x " [a, b], #! " (0, + $ ), %N " N, #n " N, N & n =' |f n (x) ( f (x)| & ! ,(9.1)

or in other words, for eachx " [a, b] we havef n(x) ! f (x) as a sequence of Real numbers.
Under these circumstances, we writef n ! f pointwise on[a, b].

Let us point out a few things about pointwise convergence.

¥ Consider { f n} "
n=1 , a sequence of continuous functions on [a, b], that is, each f n is con-

tinuous on [a, b]. If f n ! f on [a, b], to some functionf : [a, b] ! R, then f can be
continuous but also discontinuous:

1
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1. Considerx !" f n(x) :=
!
1 + x

n

"n
, we know that eachf n is continuous on any interval

[a, b]. The exponential function is continuous at anyx # R. Indeed, since for any
x # ($ 1, 1) we have

1 + x % exp(x) %
1

1 $ x
Then, by the Squeeze theoremx !" exp(x) is continuous at øx = 0. Moreover, since

exp(øx) $ exp(x) = exp(øx) á(1 $ exp(x $ øx)),

we get that x !" exp(x) is continuous at any øx # R. Hence, { f n} 1
n=1 converges

pointwise on any interval [a, b] to a continuous function, namely, tox !" exp(x).

2. Consider the sequence of functions deÞned viax !" xn deÞned on [0, 1]. We have
that setting f n(x) = xn

f n(0) = 0 and f n(1) = 1 .

Furthermore, since for anyx # (0, 1) we have thatxn " 0 asn " + & . Indeed, for
any x # (0, 1) Þxed, there isk # N such that x % k

k+1 , and so,

xn %
#

k
k + 1

$ n

=
1

(1 + 1
k )n

%
1

1 + n
k

=
k

k + n
.

Since the right handside converges to zero asn " + & , by the Squeeze Theorem
we get our initial claim. Hence, the sequence of function converges to the following
discontinuous function.

f (x) =

%
0 if t # [0, 1),

1 if t = 1.

¥ N # N given by (9.1) depends in general onx # [a, b] as well as" # (0, + & ). This means
that we cannot expect to have in every situation the sameN for all x # [a, b]. To see
this, consider the following sequence of functions on [0, 1]:

f n (x) =

&
'(

')

n áx if t # [0, 11
n ],

2 $ n áx if t # ( 1
n , 2

n ]

0 if t # ( 2
n , 1].

Clearly f n(0) " 0, and furthermore, since for anyx # (0, 1] there is n # N such that
x < 2

n , we get that f n " 0 pointwise on [0, 1]. Let k # N \ { 0} and take " # (0, 1), by
(9.1) there is N # N so that

N % n ' |f n

#
1
k

$
| < " < 1.

But, f k( 1
k ) = 1, which means that N % k is not possible, and so we must havek < N .

These remarks show that the notion of pointwise converge is not strong enough to preserve
continuity of function when passing into the limit. For these reasons we introduce a new notion
of convergence for functions.

2
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DeÞnition 9.2. Let f : [a, b] ! R be a given function and{ f n} !
n=1 be a sequence functions on

[a, b], that is, f n : [a, b] ! R for each n " N \ { 0} . We say that f n converges uniformly to
f on [a, b] if

#! " (0, + $ ), %N " N, #n " N, #x " [a, b], N & n =' |f n (x) ( f (x)| & ! ,(9.2)

Under these circumstances, we writef n ! f uniformly on [a, b].

Note that on (9.2) the condition

#x " [a, b], N & n =' |f n (x) ( f (x)| & !

is equivalent to
N & n =' ) f n ( f ) ! & !

where) g) ! = sup{| g(x)| | x " [a, b]} for any function g : [a, b] ! R, is called thesup-norm
of g on [a, b]. Consequently, (9.2) simply means that each) f n ( f ) ! is a Real number and
) f n ( f ) ! ! 0 asn ! + $ ; this must be understood as convergence as Real number.

We now show that the notion of uniform convergence is more appropriate to handle con-
tinuous functions rather than the pointwise convergence.

Theorem 9.1. Let f : [a, b] ! R be a given function and{ f n} !
n=1 be a sequence of continuous

functions on [a, b], that is, eachf n : [a, b] ! R is continuous. Suppose thatf n ! f uniformly
on [a, b], then f is continuous on[a, b].

Proof. Let øx " [a, b] and ! " (0, + $ ). Sincef n ! f uniformly on [a, b], there is N " N such
that

) f N ( f ) ! &
!
3

.

Furthermore, sincex *! f N (x) is continuous, there is" " (0, + $ ) such that

#x " [a, b], |x ( øx| < " =' |f N (x) ( f N (øx)| <
!
3

.

Also, note that for any x " [a, b], including øx we have

|f (x) ( f N (x)| & ) f ( f N ) ! .

Hence, combining all these inequalities, for anyx " [a, b] with |x ( øx| < " we get

|f (x) ( f (øx)| & |f (x) ( f N (x)| + |f N (x) ( f N (øx)| + |f N (øx) ( f (øx)|

& ) f ( f N ) ! +
!
3

+ ) f n ( f ) !

&
!
3

+
!
3

+
!
3

= !

From where we conclude thatf is continuous at øx, and since this is a generic point, we have
proved that f is continuous on [a, b].
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9.2 Cauchy criterion

From this onward we start noticing that the set of Real numbers and the set of all continuous
functions share several properties. For example, both are closed under:

¥ algebraic combinations, that is algebraic combinations of (Real numbers)/(continuous
functions) are a (Real numbers)/(continuous functions).

¥ limiting process, that is, the limit of a convergent Sequence of (Real numbers)/(continuous
functions) are (Real numbers)/(continuous functions).

In the last point we are of course talking about uniform convergence. Many others properties
are common to Real numbers and continuous functions, and the key point is to let! f ! ! play
the role absolute value.

Recall that a sequence of Real numbers{ xn} !
n=1 converges if and only if it is a Cauchy

sequence, that is,

" ! # (0, + $ ), %N # N \ { 0} , " n, p # N, N & n =' |xn+ p ( xn | & ! .

In a similar way we can deÞne aCauchy sequence of functions .

DeÞnition 9.3. Let { f n} !
n=1 be a sequence of functions on[a, b]. We say that { f n} !

n=1 is a
Cauchy sequence of functions provided that

" ! # (0, + $ ), %N # N \ { 0} , " n, p # N, N & n =' ! f n+ p ( f n ! ! & ! .(9.3)

Similarly as for Real numbers, if{ f n } !
n=1 converges uniformly to some function, then it is

a Cauchy sequence of functions; we leave the details as exercise for the reader. The converse,
as well as for Real numbers turns out to be true.

Theorem 9.2. Let { f n} !
n=1 be a Cauchy sequence of continuous functions on[a, b], then there

is a function f : [a, b] ) R continuous such thatf n ) f uniformly on [a, b].

Proof. The proof is divide into two parts, Þrst we construct a candidate to limit, and then we
prove that the candidate is actually a uniform limit of { f n} !

n=1 .

¥ Note that for any x # [a, b] we have

|f n+ p(x) ( f n(x)| & ! f n+ p ( f n ! ! .

Hence, for anyx # [a, b], the sequence of Real numbers{ f n(x)} !
n=1 is a Cauchy sequence

(in R). Hence, by the completeness ofR the sequence{ f n(x)} !
n=1 converges. Let us call

this limit Lx (the subindex is because the limit depends onx). Note that this can be
done for anyx # [a, b], and so, we can deÞne a functionf : [a, b] ) R via

" x # [a, b], f (x) := Lx .

The function f is our candidate to limit, because iff n ) f uniformly on [a, b], we must
also have thatf n ) f pointwise on [a, b]. The latter is because

" x # [a, b], |f (x) ( f n(x)| & ! f ( f n ! ! .

4
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¥ Let n ! N \ { 0} such that for any n ! N with N " n we have

#f n+ p $ f n#! " !

In particular, we have for anyx ! [a, b] that

|f n+ p(x) $ f n(x)| " !

Then, letting p % + & we get

|f (x) $ f n(x)| " ! .

But this is true for any x ! [a, b] and any n ! N with N " n, which means thatf n % f
uniformly on [a, b]. The fact that f is continuous on [a, b] is a direct consequence of
Theorem9.1, and so the proof is complete.

9.3 DiniÕs theorem

We have seen that the notion of pointwise convergence is weaker than the notion of uniform
converge, and that the Þrst one doesnÕt imply the second. There are few instances in which
both notions of convergence coincide, one of these is the so-calledDiniÕs Theorem , which we
read as follows.

Theorem 9.3. Let { f n} !
n=1 be a sequence of continuous functions on [a, b] and let f : [a, b] % R

be a continuous function on [a, b]. Suppose that converges f n % f pointwise on [a, b] and that

one of the following holds:

¥ for any x ! [a, b], the sequence { f n (x)} !
n=1 is decreasing.

¥ for any x ! [a, b], the sequence { f n (x)} !
n=1 is increasing.

Then f n % f uniformly on [a, b].

Before exhibiting the proof, let us make few comments about this theorem:

¥ This result is a somehow generalization of the monotonic sequences Theorem to contin-
uous functions. In this case, the functionf is playing the role of upper bound.

¥ The monotonic assumptions are fundamental to obtain the result, which can fail if this
is not consider, even iff is continuous; see Exercise6.

The proof of DiniÕs Theorem requires some tools we havenÕt introduced so far. We make now a
stop in the presentation of continuous function to study the so-calledHeine-Borel Theorem .
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9.3.1 Heine-Borel Theorem

We explained that the underlying idea behind the topological deÞnition of continuityf :
[a, b] ! R at øx is that any set of the form

{ x " (a, b) | f (x) " (f (øx) # ! , f (øx) + ! )

must contain an open interval that contains øx. So to speak, any set having this property is
called open around øx. Formally speaking we say thatA $ R is open if for any for any x " A,
there is an open interval centered atx of radius rx " (0, + %) contained in A, that is

&x " A, ' r x " (0, + %), (x # rx , x + rx ) $ A(9.4)

It is not di ! cult to see that any open interval (a, b) is actually an open set in terms of the
preceding deÞnition; we leave the details as exercise for the reader.

Let be a closed bounded interval [a, b] and r " (0, + %), we know that we can cover the
interval [a, b] using all the possible open interval of the forms (x # r, x + r ), that is,

[a, b] $
!

x! [a,b]

(x # r, x + r ).

We readily see that, sincer " (0, + %) is Þxed, we donÕt need to use all thex " [a, b] to cover
[a, b] but a Þnite number of them, that is, we can selectx1, x2, . . . , xp " [a, b] such that

[a, b] $
p!

k=1

(xk # r, x k + r ),

that is, we can pass from anarbitrary open covering to a Þnite open covering of [a, b].
What we have just described is the basic idea behind the Heine-Borel Theorem, although
instead of having open intervals of Þxed radius we allow them to vary.

Theorem 9.4. Let { Oi } i ! I be a collection of open sets ofR that covers the interval[a, b], that
is

[a, b] $
!

i ! I

Oi .

Then, there arei 1, . . . , ip " I such that

[a, b] $
p!

k=1

Oi k .

Proof. Let us argue by contradiction. Suppose that there is a covering{ Oi } i ! I of [a, b] that
doesnÕt have a Þnite family of elements that covers the interval [a, b]. If that is true, then either
the subinterval [a, a+ b

2 ] or [a+ b
2 , b] cannot be covered by a Þnite family of elements of{ Oi } i ! I .

Hence we set

a1 =

"
a if [a, a+ b

2 ] cannot be covered by a Þnite of{ Oi } i ! I
a+ b

2 otherwise

b1 =

"
a+ b

2 if [a, a+ b
2 ] cannot be covered by a Þnite of{ Oi } i ! I

b otherwise
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Note that in any caseb1 ! a1 = 1
2(b ! a). Since the interval [a1, b2] cannot be covered by a

Þnite family of elements of{ Oi } i ! I , the same is true for one of the subintervals [a1, a1+ b1
2 ] or

[a1+ b1
2 , b1]. Hence, repeating the preceding process we can create a a sequence of intervals

. . . " [an+1 , bn+1 ] " [an, bn] . . . " [a1, b1] " [a, b].

with [an, bn] = 1
2n (b! a). We get then that there isx # [a, b] such that { x} =

! "
n=1 [an, bn].

Now, since{ Oi } i ! I cover [a, b] there is i # I such that x # Oi , and since eachOi is open
there is r i # (0, + $ ) such that

(x ! r i , x + r i ) " Oi .

Note that x ! an % 1
2n (b! a) and bn ! x % 1

2n (b! a), Hence for takingn # N such that

1
2n

(b! a) < 2 ár i

we get that [an, bn] " (x ! r i , x + r i ) " Oi , which contradicts the fact that [an, bn] cannot be
covered by a Þnite family of elements of{ Oi } i ! I . So, the conclusion follows.

Remark 9.1. Note that the result is still true if the collection{ Oi } i ! I is open but relatively to
[a, b], that is, if the following holds

&i # I, &x # Oi , ' r x # (0, + $ ), (x ! r x , x + rx ) ( [a, b] " Oi .

The exact same proof works; we leave the details for the reader.

We are now in position to prove the DiniÕs Theorem

Proof of Theorem9.3. Suppose that the sequences{ f n(x)} "
n=1 are all increasing. Hence, in

particular, f n (x) % f (x) for any x # [a, b]. This is becausef (x) is the pointwise limit (and so,
under these circumstances the supremum) of{ f n(x)} "

n=1 .
Take ! # (0, + $ ). For every n # N \ { 0} we set

On = { x # [a, b] | f (x) ! ! < f n(x)} .

Clearly, since the sequence{ f n(x)} "
n=1 are all increasing,On " On+1 for any n # N \ { 0} .

Also { On} n
n=1 is a collection of open subsets relative to [a, b] whose union covers [a, b]:

¥ Let x # [a, b], sincef n ) f pointwise on [a, b] there is N # N such that f (x) ! f N (x) =
|f (x) ! f N (x)| < ! , and sox # ON . This leads then to say that{ On} n

n=1 covers [a, b].

¥ Let n # N \ { 0} to be Þxed and let øx # [a, b], we know that f ! f n is continuous at øx,
and so, for ÷! = ! ! f (øx) + f n(øx) there is "n # (0, + $ ) so that

&x # [a, b], |x ! øx| < "n =* |(f (x) ! f n (x)) ! (f (øx) ! f n(øx)) | < ÷! .

In other words, we have that eachOn is relatively open to [a, b] because:

(øx ! "n , øx + "n) ( [a, b] " On.

By the Heine-Borel Theorem and Remark (9.1), there is an integerN # N \ { 0} such that
[a, b] " ON . This means that f (x) ! ! < f N (x) for any x # [a, b]. Thus, for every n # N
with N % n, we havef (x) ! ! < f n(x) % f (x) for all x # [a, b]. This proves+f ! f n+" % !
wheneverN % n, and so the conclusion follows.

7
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9.4 Exercises

1. Let f : R ! R be a given function. For anya " R, let f a : R ! R be the shifted function

#x " R, f a(x) := f (x $ a).

(a) Show that f is continuous if and only if, whenever{ an} !
n=1 is a sequence inR which

converges to zero, the shifted functionsf an converge pointwise tof on R.

(b) Show that f is uniformly continuous if and only if, whenever{ an} !
n=1 is a sequence

in R with an ! 0, the shifted functionsf an converge uniformly tof on R.

2. Let { f n} !
n=1 and { gn} !

n=1 be two Cauchy sequences of continuous functions on [a, b].
Show, using the Cauchy criterion, that there is a continuous functionh : [a, b] ! R such
that f n ágn ! h uniformly on [a, b].

Hint: Prove that both sequences are uniformly bounded, that is,

%M " (0, + & ), #n " N ' f n ' ! ( M ) ' gn ' ! ( M.

3. Let { f n} !
n=1 be a sequence of continuous functions on [a, b] and a sequence{ cn} !

n=1
contained in [0, + & ) such that

#x " [a, b], |f (x)| ( cn and
n!

k=1

ck ! S " R.

Let { sn} !
n=1 be the sequence of continuous functions on [a, b] deÞned via:

#x " [a, b], #n " N \ { 0} , sn(x) :=
n!

k=1

f n(x).

Prove that { sn} !
n=1 converges uniformly on [a, b] to some functions : [a, b] ! R. Is s

uniformly continuous on [a, b]?

Hint: Prove that { sn} !
n=1 is a Cauchy sequence of functions.

4. Prove that a setA is closed if and only ifR \ A is open.

5. Prove that the sequence of function{ f n} !
n=1 given by

f n(x) :=
"

1 +
x
n

#n

converges uniformly tox *! exp(x) on any closed bounded interval [a, b].

6. Show that { f n} !
n=1 , the sequence of continuous functions on [0, 1] given by

#x " [0, 1], #n " N \ { 0} , f n(x) = ( n + 1) áxn á(1 $ x),

converges pointwise to zero, but it fail to converge uniformly to zero. Does this contradict
the DiniÕs Theorem?

Hint: Evaluate f n at x = n
n+1 .

8
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Week 11: Introduction to integration theory

We begin the study of one of the pillar of calculus, namelyintegration. Along this part of the
course we mainly focus on theRiemann integral , however at the end of the course we will
present a short overview onLebesgue integral .

Unless otherwise stated, we focus on bounded functions deÞned on a bounded closed interval
and whose values belong toR. Recall that a function is said to be bounded if

mf := inf { f (x) | x ! [a, b]} ! R Mf := sup{ f (x) | x ! [a, b]} ! R

11.1 Introductory example

From a practical point of view, the integral of a non negative function can be interpreted as
the area of the regionon the xy-plane limited by the curves

y = f (x), y = 0, x = a, x = b.

For example, let us consider the functionf (x) = x2 deÞned on [0, 1]. There are several way
to estimate the area under the curve, but we basically use two, one that approximates it from
below and another that does it from above.

We begin by taking n ! N \ { 0} and then dividing the interval [0, 1] into n subintervals
whose lengths are1

n , that is, setting xk := k
n for any k ! { 0, . . . , n} , we consider the intervals

[xk! 1, xk] " [0, 1], #k ! { 1, . . . , n} .

On each of these intervals, let us denote byAk the area of the region on thexy-plane
limited by the curves

y = x2, y = 0, x = xk! 1, x = xk

Note that x2
k! 1 $ x2 $ x2

k! 1 for any x ! [xk! 1, xk], from where we may assume that

x2
k! 1(xk %xk! 1) $ Ak $ x2

k(xk %xk! 1).

The latter yields to
(k %1)2

n3
$ Ak $

k2

n3
.

If we call A the area of the region limited by the curves

y = x2, y = 0, x = 0, x = 1,

1
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we immediately see thatA =
! n

k=1 Ak, from where get the estimates

1
n3

n"

k=1

(k ! 1)2 " A "
1
n3

n"

k=1

k2.

At this point we might state an intermediate result regarding sums:

Lemma 11.1. For any n # N \ { 0} we have

n"

k=1

k =
n2 + n

2
and

n"

k=1

k2 =
2 án3 + 3 án2 + n

6

Hence, by Lemma11.1we have that

2 án3 + n2 ! n
6 án3

" A "
2 án3 + 3 án2 + n

6 án3
.

Finally, since n # N \ { 0} is arbitrary, we can let n $ + % and so, by the Squeeze Theorem
we get that A = 1

3.
This example shows the underlying ideas behind the concept of Riemann integral of a

function. However, we need to be careful and not take this as the deÞnition of the Riemann
integral, but only as an application; the idea only works if the function has non-negative values.
Note that we have talked aboutareasbut we have never deÞned them in mathematical terms.

11.2 Riemann integral for piecewise constant functions

We turn to a formal deÞnition of the Riemann integral of a function. We Þrst introduce
the simplest class of functions for which this integral can be deÞned, and later on, we give a
deÞnition that works for a wider class of mappings, which in particular includes the continuous
functions.

Let I & R be a bounded interval, that is, for somea, b# R with a " b, I agrees with one
of the following sets

(a, b), [a, b), (a, b], [a, b].

Recall that if a = b then in the Þrst three situations we getI = ' and in the last one
I = { a} = { b} . In any case, we deÞne thelength of the interval I , denoted by! (I ), via

! (I ) := b! a.

Note that this means that if I and J are two bounded interval, then

I ( J = ' =) ! (I ( J ) = 0 .

2
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11.2.1 Partitions of intervals

One of the key tools required to introduce the concept of Riemann integral of a function is the
notion of partition of an interval.

DeÞnition 11.1. Let a, b ! R with a < b. A partition P of [a, b] is a Þnite collection of
nonempty pairwise disjoint intervals that covers[a, b]. In other words, P = { I 1, I 2, . . . , I n }
where eachI k is a nonempty interval contained in[a, b] such that

" x ! [a, b], #!k ! { 1, . . . , n} , x ! I k .

Under these circumstances, we deÞne themesh of P via

$P$ := max{ ! (I 1), . . . , ! (I k), . . . , ! (I n )} .

Remark 11.1. Alternatively, we can deÞne a partition of[a, b] as a Þnite collection of points
P = { x0, x1, . . . , xn} with x0 = a and xn = b, so that

xk ! [a, b] and xk! 1 % xk, " k = 1, . . . , n.

Under these circumstances, eachxk is called anode of the partition. Furthermore, the mesh
of P is then given by

$P$ := max{ x1 & x0, . . . , xk & xk! 1, . . . , xn & xn! 1} .

We leave the details as exercise for the reader.

In the light of the preceding remark, it is not di! cult to see that, given a partition
P = { I 1, I 2, . . . , I n } of [a, b], the length of the interval [a, b] is the sum of the length of
the subintervals of the partition, that is,

! ([a, b]) =
n!

k=1

! (I k).

Moreover, if [c, d] ' [a, b], then

! ([c, b]) =
n!

k=1

! ([c, d] ( I k).

To see this is enough to notice that÷P = { [c, d] ( I 1, . . . , [c, d] ( I n} \ { ) } is a partition of [c, d].
Given two partitions P1 = { I 1, I 2, . . . , I n } and P2 = { J1, J2, . . . , Jm} of an interval [a, b],

we deÞned thecommon reÞnement of P1 and P2, denotedP1# P2, as the partition

P1# P2 =
n"

i =1

m"

j =1

{ I i ( Jj } \ { ) } .

Example 11.1. Let P1 = { [0, 1), { 1} , (1, 2), [2, 3]} and P2 = {{ 0} , (0, 1], (1, 3]} be two parti-
tions of the interval [0, 3], then

P1# P2 = {{ 0} , (0, 1), { 1} , (1, 2), [2, 3]} .

3
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11.2.2 Piecewise constant functions

Given a partition P = { I 1, I 2, . . . , I n } of [a, b], we say that a function f : [a, b] ! R is
piecewise constant relative to P if there are c1, . . . , cn " R such that

f (x) = ck wheneverx " I k .

Example 11.2. Let P = { [0, 1), { 1} , (1, 2]} be a partition of the interval [0, 2], then

f (x) =

!
"#

"$

2 if x " [0, 1)

1 if x = 1

# 1 if x " (1, 2]

is a piecewise constant function relative toP deÞned on[0, 2].

Note that if f : [a, b] ! R is piecewise constant relative to a partitionP1 and to another
partition P2, then it is also piecewise constant relative to their common reÞnementP1# P2.
This means in particular that a function can be piecewise constant relative to several partitions
at the same time. For this reason, it is convenient to introduce a new deÞnition that avoids
Þxing beforehand a partition.

DeÞnition 11.2. We say that a functionf : [a, b] ! R is piecewise constant on [a, b] if
there is a partition P = { I 1, I 2, . . . , I n } of [a, b] so that f is piecewise constant relative toP.

It turns out that for the class of functions that are piecewise constant on an interval [a, b],
the Riemann integral can be deÞned in simple terms.

DeÞnition 11.3. Let f : [a, b] ! R be a piecewise constant function, then itsRiemann
integral is deÞned via the formula:

%b

a
f :=

n&

k=1

ck! (I k),

whereP = { I 1, I 2, . . . , I n } is any partition of [a, b] for which f is piecewise constant relative
to P and eachck is the value off on the interval I k .

Remark 11.2. Note that in DeÞnition 11.3 the value of
' b

a f is independent of the partition
taken. Indeed, ifP1 = { I 1, I 2, . . . , I n } and P2 = { J1, J2, . . . , Jm} are two di! erent partition
associated withf , that is, there arec1, . . . , cn " R and d1, . . . , dm " R such that

f (x) = ci wheneverx " I i and f (x) = dj wheneverx " Jj .

Since f is also piecewise constant relative toP1# P2 we have that

f (x) = ei,j wheneverx " I i $ Jj .

Note that if I i $ Jj = %then ei,j can be any Real number, but ifI i $ Jj &= %, then ei,j = ci = dj .
Hence,

n&

i =1

ci á! (I i ) =
n&

i =1

ci á
m&

j =1

! (I i $ Jj ) =
n&

i =1

m&

j =1

ei,j á! (I i $ Jj )

4
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Similarly,
m!

j =1

dj á! (Jj ) =
m!

j =1

dj á
n!

i =1

! (I i ! Jj ) =
n!

i =1

m!

j =1

ei,j á! (I i ! Jj ).

From where we get that
n!

i =1

ci á! (I i ) =
m!

j =1

dj á! (Jj ).

Example 11.3. Let us pick up the data on Example11.2, then
" 2

0
f = 2 á! ([0, 1)) + 1 á! ({ 1} ) " 1 á! ((1, 2]) = 2 + 0 " 1 = 1.

Let us point out some properties of the Riemann integral of a piecewise constant function
f : [a, b] # R; for more general properties we refer to Exercise4.

¥ If f is constant all along [a, b], that is, if f (x) = c for any x $ [a, b], then

" b

a
f = c á(b" a).

¥ If f is bounded, that is,mf , Mf $ R, then

mf á(b" a) %
" b

a
f % Mf á(b" a).

¥ If f is non-negative all along [a, b], that is, if f (x) $ [0, + & ) for any x $ [a, b], then

0 %
" b

a
f.

¥ For any c $ [a, b], if there are other piecewise constant functionsf 1 : [a, c] # R and
f 2 : [c, b] # R such that

f (x) = f 1(x), ' x $ [a, c), and f (x) = f 2(x), ' x $ (c, b],

then " b

a
f =

" c

a
f 1 +

" b

c
f 2.

11.3 Riemann integrable functions

We now focus on the deÞnition of the Riemann integral for an arbitrary bounded function
f : [a, b] # R, not necessarily piecewise constant.

We say that a functiong : [a, b] # R majorizes f on [a, b] if f (x) % g(x) for any x $ [a, b].
Similarly, we say that h : [a, b] # R minorizes f on [a, b] if h(x) % f (x) for any x $ [a, b].
As we have shown in the introductory example, the idea of the Riemann integral is to try to

5
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integrate a function by Þrst majorizing or minorizing that function by a piecewise constant
function, for which we already know how to deÞne the Riemann integral.

It is worthy to notice that since f : [a, b] ! R is supposed to be a bounded function, then
the constant functionsx "! mf and x "! Mf minorizes and majorizesf on [a.b]. Furthermore,
these functions are in particular piecewise constant, so the sets of Real numbers

Af :=
! " b

a
g

#
#
#
#g : [a, b] ! R is piecewise constant and majorizesf on [a, b]

$

Bf :=
! " b

a
h

#
#
#
#h : [a, b] ! R is piecewise constant and minorizesf on [a, b]

$

are non-empty. Moreover, ifg : [a, b] ! R and h : [a, b] ! R are function that majorizes and
minorizesf on [a, b], respectively, then

mf # g(x), and h(x) # Mf , $x %[a.b].

In particular, Af is bounded below andBf is bounded above. Therefore, by the Supremum
axiom, we have that their inÞmum and supremum are well-deÞned Real numbers.

DeÞnition 11.4. Let f : [a, b] ! R be a bounded function. We deÞne theupper Riemann
integral of f on [a, b] by

" b

a
f := inf

! " b

a
g

#
#
#
#g : [a, b] ! R is piecewise constant and majorizesf on [a, b]

$

and the lower Riemann integral of f on [a, b] by

" b

a
f := sup

! " b

a
h

#
#
#
#h : [a, b] ! R is piecewise constant and majorizesf on [a, b]

$

Note that we alway have

mf á(b& a) #
" b

a
f #

" b

a
f # Mf á(b& a).

The inequality on the middle can be strict, for example consider the function

f (x) =

%
1 if x %Q ' [0, 1]

0 if x %[0, 1] \ Q

If g : [0, 1] ! R is a piecewise function that majorizesf , then g must be bounded below by 1
except at a Þnite number of points, and ifh : [0, 1] ! R is a piecewise function that minorizes
f , then h is bounded above by 0 except at a Þnite number of points. Thus,

" b

a
f # 0 < 1 #

" b

a
f.

6
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In the special case that the upper and lower Riemann integrals agree and are Real numbers,
we say that the function isRiemann integrable and we then deÞne itsRiemann integral
on [a, b] via

! b

a
f :=

! b

a
f =

! b

a
f.

Remark 11.3. If f : [a, b] ! R is piecewise constant and bounded, thenf majorizes and
minorizes f the same time on[a, b]. Hence it is clear thatf is Riemann integrable.

Remark 11.4. The deÞnition of Riemann integrable functions we have adopted is specially
suited for bounded functions, as a matter of fact only bounded functions can be Riemann
integrable. Indeed, iff : [a, b] ! R is Riemann integrable, by the deÞnition of the upper and
lower Riemann integrals we get that there are piecewise constant functionsh : [a, b] ! R and
h : [a, b] ! R such thath " f " g, and since piecewise constant functions are bounded,f must
be bounded too.

11.4 Exercises

1. Prove Lemma11.1.

Hint: Show that

n+1"

k=1

k3 =
n"

k=1

k3 + 3 á
n"

k=1

k2 + 3 á
n"

k=1

k + ( n + 1)

2. Let P1 = { I 1, . . . , I n } and P2 = { J1, . . . , Jm} be two given partitions of [a, b]. Show that

#P1# P2# " min{ #P1#, #P2#}

3. Let f : [a, b] ! R be a piecewise constant function on [a, b]. Show that x $! |f (x)| is
piecewise constant on [a, b].

4. Let f 1 : [a, b] ! R and f 2 : [a, b] ! R be two piecewise constant functions on [a, b].

(a) Use the notion of common reÞnement to prove that for any! % R, the function
f 1 + ! áf 2 is piecewise constant on [a, b] and then show that

! b

a
(f 1 + ! áf 2) =

! b

a
f 1 + ! á

! b

a
f 2, &! %R.

(b) Use the notion of common reÞnement to prove that the functions min{ f 1, f 2} and
max{ f 1, f 2} are also piecewise constant [a, b].

(c) Use the notion of common reÞnement to prove that the functionf 1 áf 2 is piecewise
constant on [a, b]. Prove or give a counterexample for the following formula

! b

a
(f 1 áf 2) =

! b

a
f 1 á

! b

a
f 2

7
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5. (Riemann sums) Let f : [a, b] ! R be a bounded function andP = { I 1, I 2, . . . , I n }
be a partition of [a, b]. We deÞne theupper Riemann sum of f relative to P by

U(f, P ) :=
n!

k=1

sup{ f (x) | x " I k} á ! (I k),

and the lower Riemann sum of f relative to P by

L(f, P ) :=
n!

k=1

inf { f (x) | x " I k} á ! (I k).

(a) Prove that U(f, P ) and L(f, P ) are well-deÞned Real numbers.

(b) Let g : [a, b] ! R and h : [a, b] ! R be two function that majorizes and minorizes
f on [a, b], respectively. Suppose thatg and h are piecewise constant relative toP.
Prove that

U(f, P ) #
" b

a
g and

" b

a
h # L(f, P ).

(c) Prove that
" b

a
f = inf { U(f, P ) | P is a partition of [a, b]}

and " b

a
f = sup{ L(f, P ) | P is a partition of [a, b]} .

6. Suppose thatf : [a, b] ! R is Riemann integrable.

(a) Suppose thatf is non-negative all along [a, b]. Show that

0 #
" b

a
f.(11.1)

If ( 11.1) holds, can we conclude thatf is non-negative? Prove this or give a coun-
terexample.

(b) For any c " [a, b], if there are other Riemann integrable functionsf 1 : [a, c] ! R
and f 2 : [c, b] ! R such that

f (x) = f 1(x), $x " [a, c], and f (x) = f 2(x), $x " [c, b],

Show that " b

a
f =

" c

a
f 1 +

" b

c
f 2.
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Week 12: Riemann integrable function

The class of functions that are Riemann integrable is wide and di! cult to characterize; it is
much larger than the set of continuous functions. For this reason, we now turn our attention
into criteria that ensure that a function is Riemann integrable.

12.1 Basic properties of Riemann integrable functions

It can be proved that algebraic combinations and min/max functions of piecewise constant
functions are also piecewise constant functions; see Exercise 4, Week 11Õs notes. Hence, it is
natural to imagine that algebraic combinations and min/max functions of Riemann integrable
functions are also Riemann integrable. This is true, but their proofs are not simple extensions.
Furthermore, in most cases an exact formula for the value of the integral cannot be given.

12.1.1 Linear combinations of Riemann integrable functions

We begin with the simplest cases which corresponds to linear combinations of Riemann inte-
grable functions. In this case, it is possible to provide an explicit formula for the Riemann
integralÕs value.

Theorem 12.1. Let f 1 : [a, b] ! R and f 2 : [a, b] ! R be two Riemann integrable functions
on [a, b]. Then, for any ! " R we have thatf 1 + ! áf 2 is Riemann integrable with

! b

a
(f 1 + ! áf 2) =

! b

a
f 1 + ! á

! b

a
f 2

Proof. The case! = 0 is trivial, so we might either assume! > 0 or ! < 0. We only do the
case! > 0, the other is similar and is left as exercise for the reader.

Let " > 0 be given but arbitrary. Sincef 1 is Riemann integrable, there are two piecewise
constant function g1 : [a, b] ! R and h1 : [a, b] ! R such that h1 # f 1 # g1 and

! b

a
g1 $

"
2

#
! b

a
f 1 #

! b

a
h1 +

"
2

.

In a similar way, there areg2 : [a, b] ! R and h2 : [a, b] ! R, piecewise constant on [a, b], such
that h2 # f 2 # g2 and ! b

a
g2 $

"
2!

#
! b

a
f 2 #

! b

a
h2 +

"
2!

.

1
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Note that h1+ ! h2 and g1+ ! g2 are both piecewise constant, and the Þrst one minorizesf 1+ ! áf 2

and the second one majorizes it. Hence, by deÞnition of the lower and upper Riemann integrals
and the properties of the Riemann integral over piecewise constant function we have

! b

a
h1+ ! á

! b

a
h2 =

! b

a
(h1+ ! áh2) !

! b

a
(f 1+ ! áf 2) !

! b

a
(f 1+ ! áf 2) !

! b

a
(g1+ ! ág2) =

! b

a
g1+ ! á

! b

a
g2.

Note that the left and right hand-sides also satisfy

! b

a
f 1 + ! á

! b

a
f 2 " " !

! b

a
h1 + ! á

! b

a
h2 and

! b

a
g1 + ! á

! b

a
g2 !

! b

a
f 1 + ! á

! b

a
f 2 + ".

From where we get that

! b

a
f 1 + ! á

! b

a
f 2 " " !

! b

a
(f 1 + ! áf 2) !

! b

a
(f 1 + ! áf 2) !

! b

a
f 1 + ! á

! b

a
f 2 + ".

Finally, the conclusion follows because the latter is true for any" # (0, + $ ), so we get that

! b

a
f 1 + ! á

! b

a
f 2 =

! b

a
(f 1 + ! áf 2) =

! b

a
(f 1 + ! áf 2).

12.1.2 Max and Min functions of Riemann integrable functions

Let us now pass to the case of max and min function.

Theorem 12.2. Let f 1 : [a, b] % R and f 2 : [a, b] % R be two Riemann integrable functions
on [a, b]. Then, max{ f 1, f 2} and min{ f 1, f 2} are Riemann integrable.

Proof. We focus on the case max{ f 1, f 2} , the other one is similar and left as exercise.
The proof starts in a similar way as the one given for Theorem12.1, that is, let " > 0 be

given but arbitrary. Since, for eachi = 1, 2, the function f i is Riemann integrable, there are
two piecewise constant functiongi : [a, b] % R and hi : [a, b] % R such that hi ! f i ! gi and

! b

a
gi "

"
4

!
! b

a
f 1 !

! b

a
h1 +

"
4

,

Note that max{ h1, h2} and max{ g1, g2} are both piecewise constant on [a, b], and furthermore,

max{ h1, h2} ! max{ f 1, f 2} ! max{ g1, g2} .

Hence, by deÞnition of the lower and upper Riemann integrals we have

! b

a
max{ h1, h2} !

! b

a
max{ f 1, f 2} !

! b

a
max{ f 1, f 2} !

! b

a
max{ g1, g2} .

2
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From where

0 !
! b

a
max{ f 1, f 2} "

! b

a
max{ f 1, f 2} !

! b

a
max{ g1, g2} "

! b

a
max{ h1, h2} .

By Theorem 12.1, we have that

! b

a
max{ g1, g2} "

! b

a
max{ h1, h2} =

! b

a
(max{ g1, g2} " max{ h1, h2} )

On the other hand, for eachi = 1, 2,

gi = hi + ( gi " hi ) ! max{ h1, h2} + ( g1 " h1) + ( g2 " h2),

which means that max{ g1, g2} is bounded above by the right hand-side of the latter inequality.
Thus, by the properties of the Riemann integral for piecewise constant functions we get

! b

a
(max{ g1, g2} " max{ h1, h2} ) !

! b

a
g1 "

! b

a
h1 +

! b

a
g2 "

! b

a
h2

Note that by the initial assumption, the right hand-side is less than or equal to! , hence

0 !
! b

a
max{ f 1, f 2} "

! b

a
max{ f 1, f 2} ! ! .

Since,! # (0, + $ ) is arbitrary, we get that the upper and lower Riemann integrals agree, and
the proof is then complete.

Given a function f : [a, b] % R, we deÞne itspositive part by f + := max{ f, 0} and
its negative part by f ! := min { f, 0} . Note that |f | = f + " f ! , and so, if f is Riemann
integrable, then so aref + , f ! and |f |.

12.1.3 Multiplication of Riemann integrable functions

We would like now to prove that if f 1 : [a, b] % R and f 2 : [a, b] % R are Riemann integrable
on [a, b], then do it is f 1 áf 2. Note that

f 1 áf 2 =
1
2

(f 1 + f 2)2 " f 2
1 " f 2

2 .

Thus, to prove that f 1 áf 2 is Riemann integrable we only need to show that for any Riemann
integrable function f : [a, b] % R, its square is also a Riemann integrable function. Then, the
result will follows as consequence of Theorem12.1and the following one.

Theorem 12.3. Let f : [a, b] % R be a Riemann integrable function, thenf 2 is also a Riemann
integrable function.

3
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Proof. Sincef = f + + f ! we have that f 2 = f 2
+ + 2 áf + áf ! + f 2

! . But, f + áf ! = 0, so to
prove that f 2 is Riemann integrable we only need to prove thatf 2

+ and f 2
! are both Riemann

integrable. We only exhibit the proof forf 2
+ , the one for f 2

! it is enough to replacef + with
! f ! when appropriate; recall thatf ! is non positive.

Sincef is Riemann integrable it is also bounded, so there isM " (0, + # ) so that

0 $ f + $ M.

Let ! " (0, + # ). Since f + is also Riemann integrable, there are two piecewise constant
functions g : [a, b] % R and h : [a, b] % R such that h $ f + $ g and

! b

a
g !

!
4 áM

$
! b

a
f + $

! b

a
h +

!
4 áM

.

Note that x &%0 and x &%M are both piecewise constant function on [a, b], which minorizes
and majorizes, respectively, the functionf + . Hence, without loss of generality, we can assume
that 0 $ h and g $ M . Therefore, f 2

+ is minorized and majorized byh2 and g2, respectively.
Sinceg and h are both piecewise constant,h2 and g2 are piecewise constant too. Consequently

0 $
! b

a
f 2

+ !
! b

a
f 2

+ $
! b

a
(g2 ! h2) =

! b

a
[(g ! h) á(g + h)].

But, g + h $ 2 áM and 0$ g ! h, so

! b

a
[(g ! h) á(g + h)] $ 2 áM

! b

a
(g ! h) = 2 áM

" ! b

a
g !

! b

a
h

#
$ ! .

Since, ! " (0, + # ) is arbitrary, the upper and lower Riemann integrals off 2
+ coincide, this

ends the proof.

12.2 Riemann integral and monotonic functions

Recall that a function is called monotonic if it is either increasing or decreasing all along the
interval where it is deÞned, that is,f : [a, b] % R is monotonic if one of the following holds:

¥ For any x, y " [a, b] with x < y we havef (x) $ f (y).

¥ For any x, y " [a, b] with x < y we havef (y) $ f (x).

Theorem 12.4. Let f : [a, b] % R be a monotonic function, thenf is Riemann integrable.

Proof. Note that since f is monotonic it is also bounded; eitherf (a) $ f (x) $ f (b) or
f (b) $ f (x) $ f (a) for any x " [a, b]. Let n " N \ { 0} be Þxed but arbitrary. We consider the
case thatf is increasing, the other is left as exercise for the reader. Letxk := a + k

n (b! a) for
any k " { 0, . . . , n} and the partition P = { I 1, . . . , I n } , where

I 1 = [0, x1] and I k = ( xk! 1, xk], ' k " { 2, . . . , n} .

4
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For eachk ! { 1, . . . , n} we have! (I k) = b! a
n , and sincef is increasing we also have that for

any x ! I k

f (xk! 1) " f (x) " f (xk).

Therefore, the piecewise constant functiong : [a, b] # R given by

g(x) = f (xk), wheneverx ! I k

majorizesf and the piecewise constant functionh : [a, b] # R given by

h(x) = f (xk! 1), wheneverx ! I k

minorizes it. Therefore,

n!

k=1

f (xk! 1)! (I k) =
" b

a
h "

" b

a
f "

" b

a
f "

" b

a
g =

n!

k=1

f (xk)! (I k)

From this we get that

" b

a
f $

" b

a
f "

n!

k=1

(f (xk $ f (xk! 1)) ! (I k) =
b$ a

n

n!

k=1

(f (xk $ f (xk! 1)) =
b$ a

n
(f (xn) $ f (x0)) .

But xn = b and x0 = a, from where we get that the right hand side is less than or equal
to b! a

n (f (b) $ f (a)). Therefore, letting n # + % we get that the upper and lower Riemann
integrals of f agree and the function is then Riemann integrable.

12.3 Riemann integral and continuous functions

As we have claimed at the beginning, continuous functions are also Riemann integrable. This
is essentially due to the fact that continuous functions on bounded closed interval are bounded
and also uniformly continuous, that is,

&" ! (0, + %), ' # ! (0, + %), &x, y ! [a, b], |x $ y| < # =( |f (x) $ f (y)| < " .

Theorem 12.5. Let f : [a, b] # R be a continuous function, thenf is Riemann integrable.

Proof. Let " ! (0, + %) and # ! (0, + %) given by the uniform continuity of f on [a, b] associ-
ated with ÷" = !

b! a . By the Archimedean property, there isn ! N such that 1
n (b$ a) < #. Let

xk := a + k
n (b$ a) for any k ! { 0, . . . , n} and the partition P = { I 1, . . . , I n } , where

I 1 = [0, x1] and I k = ( xk! 1, xk], &k ! { 2, . . . , n} .

Clearly, for eachk ! { 1, . . . , n} we have! (I k) < #, and so, for anyx, y ! I k we must have

|f (x) $ f (y)| <
"

b$ a
,

5
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but since the maximum and minimum of the function are attained, because it is continuous
deÞned on a closed bounded interval, we also have:

max{ f (x) | x ! I k} " min{ f (y) | y ! I k} <
!

b" a
.

Note that the piecewise constant functiong : [a, b] # R given by

g(x) = gk := max{ f (x) | x ! I k} , wheneverx ! I k

majorizesf and the piecewise constant functionh : [a, b] # R given by

h(x) = hk := min { f (x) | x ! I k} , wheneverx ! I k

minorizes it. Therefore,

n!

k=1

hk"(I k) =
" b

a
h $

" b

a
f $

" b

a
f $

" b

a
g =

n!

k=1

gk"(I k)

From this we get that
" b

a
f "

" b

a
f $

n!

k=1

(gk " hk)"(I k).

But gk " hk < !
b! a and

# n
k=1 "(I k) = b" a, so the right hand side is less than! , which is any

positive Real number. Consequently, the upper and lower Riemann integrals off agree and
the function is then Riemann integrable.

The fact that continuous functions are Riemann integrable provides an interesting property
known as theMean Value Theorem for integrals .

Theorem 12.6. Let f : [a, b] # R be a continuous function, then there isx ! [a, b] such that

" b

a
f = f (x)(b" a).

Proof. By Theorem12.5we know that f is Riemann integrable, and since it is bounded below
and above bymf and Mf we have

mf á(b" a) $
" b

a
f $ Mf á(b" a).

Furthermore, sincemf , Mf ! f ([a, b]) we have that y = 1
b! a

$b
a f ! f ([a, b]). Hence, by the

Intermediate Value Theorem, there isx ! [a, b] such that f (x) = y, and so the conclusion
follows.

6
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12.4 Exercises

1. Suppose thatf : [a, b] ! R is Riemann integrable.

(a) Suppose thatf is non-negative all along [a, b]. Show that

0 "
! b

a
f.(12.1)

If ( 12.1) holds, can we conclude thatf is non-negative? Prove this or give a coun-
terexample.

(b) For any c # [a, b], if there are other Riemann integrable functionsf 1 : [a, c] ! R
and f 2 : [c, b] ! R such that

f (x) = f 1(x), $x # [a, c], and f (x) = f 2(x), $x # [c, b],

Show that ! b

a
f =

! c

a
f 1 +

! b

c
f 2.

2. Let f : [a, b] ! R and g : [a, b] ! R be two Riemann integrable functions on [a, b].

(a) Prove the following formulas
"
"
"
"

! b

a
f

"
"
"
" "

! b

a
|f |(12.2)

max
# ! b

a
f,

! b

a
g
$

"
! b

a
max{ f, g }(12.3)

! b

a
min{ f, g } " min

# ! b

a
f,

! b

a
g
$

(12.4)

Hint: Use Exercise1a.

(b) Give an example for each inequality (12.2) - (12.4) where the equality doesnÕt hold.

3. Prove Theorem12.1 for the case! < 0.

4. Prove Theorem12.2 for the case min{ f 1, f 2} .

5. Prove Theorem12.4 for the casef is decreasing.

6. Let f : [a, b] ! R be a continuous function, Prove that for any øx # [a, b) we have

lim
h! 0

1
h

! øx+ h

øx
f = f (øx).

7
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Week 13: Sequences of Riemann integrable
functions

We now turn into the study of sequence of Riemann integrable functions and we study some
criteria that allow us to interchange order in which integrals and limits are considered, that is,
we are concerned with the question of when, for an appropriate notion of limit of functions,
the following holds

lim
n! + "

! b

a
f n =

! b

a
lim

n! + "
f n .(! )

13.1 Notion of limit of functions

So far, we have studied two notions of convergence for functions, namely, poitwise and uniform
convergence. Recall that a sequence of functions{ f n} "

n=1 deÞned on [a, b] is said to converge
pointwise to another functionf : [a, b] " R if

#x $ [a, b], f n (x) " f (x) as n " + %,

and the sequence is said to converge uniformly tof if

&f n ' f &" " 0 asn " + %.

We know that uniform convergence is a stronger notion than pointwise converge; the Þrst one
implies the second one, but no vice versa. It turns out that pointwise converge by itself is
too weak to allow (! ) to hold (without further assumptions). For example, let{ xn} "

n=1 be an
enumeration of the set of Rational numbers on [0, 1]; recall that this set is inÞnite countable.
Consider then the sequence of functions given by

f n(x) =

"
1 if x $ { x1, . . . , xn}

0 otherwise
#x $ [0, 1].

Clearly, the each function on the sequence is Riemann integrable. Furthermore, this sequence
of functions converges pointwise to

f (x) =

"
1 if x $ Q

0 otherwise
#x $ [0, 1].

1
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But have seen that the latter is not even Riemann integral, let alone (! ) makes any sense. We
will see later that if in addition of pointwise converge, the sequence satisÞes further assumptions
and the limit function is also Riemann integrable, then (! ) does hold.

The situation for uniform convergence is di!erent, and as a matter of fact it su"ces by
itself to as the following theorem shows. Note that in the theorem we are not assuming that
the functions are continuous; in that case the limiting function would be Riemann integrable
because the uniform limit of a sequence of continuous functions is continuous too.

Theorem 13.1. Let { f n} !
n=1 be a sequence of Riemann integrable functions that converges

uniformly to a function f : [a, b] " R. Then f is Riemann integrable and

lim
n" + !

! b

a
f n =

! b

a
f.

Proof. First of all, let us show that the sequence of Real numbers given by

yn :=
! b

a
f n

converges to a Real number. To see this we use the Cauchy criterion. Note that for any
n, p # N \ { 0} we have

f n+ p(x) $ f n(x) % &f n+ p $ f n&! and f n(x) $ f n+ p(x) % &f n+ p $ f n&! , ' x # [a, b].

Hence
|yn+ p $ yn| % &f n+ p $ f n&! á(b$ a).

Therefore, sincef n " f uniformly on [a, b], we have that { f n} !
n=1 is a Cauchy sequence of

function and so, for any! # (0, + ( ) there is N # N such that if n, p # N with N % n we have

&f n+ p $ f n&! %
!

b$ a
.

This implies that { yn} n
n=1 is a Cauchy sequence of Real numbers, and thus, by the completeness

of R, it converges to someL # R. On the other hand, note that

f n(x) $ &f n $ f &! % f (x) % f n(x) + &f n $ f &! , ' x # [a, b].

Let ! # (0, + ( ) be Þxed from now on and taken # N such that

&f n $ f &! %
!

3 á(b$ a)
and

"
"
"
"

! b

a
f n $ L

"
"
"
" %

!
3

.

Let gn : [a, b] " R and hn : [a, b] " R be two piecewise constant functions that majorizes
and minorizesf n on [a, b], respectively, and such that

! b

a
gn $

!
3

%
! b

a
f n %

! b

a
hn +

!
3

2
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Note that x !" gn(x) # $ f n # f $! and x !" hn(x) # $ f n # f $! are also piecewise constant,
and the Þrst one majorizesf and the second one minorizes it. Consequently we get

! b

a
hn # $ f n # f $! á(b# a) %

! b

a
f %

! b

a
f %

! b

a
gn(x) + $f n # f $! á(b# a).

Gathering together all the preceding estimates, we get

L # ! %
! b

a
f n #

2 á!
3

%
! b

a
f %

! b

a
f %

! b

a
f n(x) +

2 á!
3

% L + !.

But ! & (0, + ' ) is arbitrary, so we Þnally get that the upper and lower Riemann integrals
of f agree with L, which is the limit of the Riemann integrals off n , and so the function is
then Riemann integrable and its integral coincides with the limit of the integrals off n .

13.2 Monotone convergence Theorem

In the introductory example we have exhibited shows that the mere pointwise convergence of
a sequence of Riemann integrable functions is not enough to interchange limit with integral,
that is, to get (( ). The following result allows to do this change. It is worthy notice that the
theorem requires the limiting function to be Riemann integrable beforehand, and so,it is not
a criterion to determine whether the limiting function is Riemann integrable.

The theorem we review in this section is called theMonotone Convergence Theorem
for Riemann Integrals.The proof of the theorem is based on a characterization of Riemann
integrability and the so-calledCousinÕs Lemma. The latter reads as follows.

Lemma 13.1. Let [a, b] be a given bounded and closed interval andr : [a, b] " (0, + ' ) be a
given positive function. Then, there exist a partitionP = { I 1, . . . , I m } and y1 < . . . < y m Real
numbers such thatyk & I k and "(I k) < 2r (yk) for eachk & { 1, . . . , m} .

Proof. Let us consider the family of open intervals{ Oy} y" [a,b] given by

Oy = ( y # r (y), y + r (y)), ) y & [a, b].

Clearly, this is an open covering of the interval [a, b], and so, by the Heine-Borel Theorem,
there arey1, . . . , ym & [a, b] such that { Oyk } m

k=1 covers [a, b] too. Without loss of generality we
assume thaty1 < . . . < y m# 1 < y m and furthermore, we can also assume that noOyk contains
other Oyl , provided that k *= l. The latter means that

yk+1 # r (yk+1 ) < y k + r (yk), ) k & { 1, . . . , m} .

Note that y1 # r (y1) < a and b < ym + r (ym). Hence, by deÞningx0 = a and xm = b, we see
that taking any xk & (yk+1 # r (yk+1 ), yk + r (yk)) + (yk, yk+1 ) for any k & { 1, . . . , m # 1} we get
the desired properties.

Before going further, we introduce an useful criterion for a function to be Riemann inte-
grable, which is a version of the so-calledDarboux criterion for Riemann integrability.

3
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DeÞnition 13.1. We say that a functionf : [a, b] ! R satisÞes the Darboux property if for
any ! " (0, + # ) there is " " (0, + # ) such that for any partition P = { J1, . . . , Jm} of [a, b]
with mesh$P$ < " and any collection of pointsy1, . . . , ym " [a, b] such that yj " Jj for any
j " { 1, . . . , m} we have

m!

j =1

"
"
"
"
"

#

Jj

f %f (yj ) á#(Jj )

"
"
"
"
"

& !.

ItÕs worthy to notice that the Darboux property is sometimes taken as deÞnition for a
function to be Riemann integrable. This is because a functionf : [a, b] ! R is Riemann
integrable if and only if it satisÞes the Darboux criterion. We now prove the one of the
implication, the other is left as exercise for the reader.

Lemma 13.2. Any Riemann integrable functionf : [a, b] ! R satisÞes the Darboux property.

Proof. Let ! " (0, + # ), since f is Riemann integrable, it is bounded ($f $! " R) and there
are two piecewise constant functionsh : [a, b] ! R and g : [a, b] ! R with h & f & g such that

# b

a
g %

!
4

&
# b

a
f &

# b

a
h +

!
4

.

Without loss of generality, we assume thath and g are piecewise constant relative to the same
partition P0 = { I 1, . . . , I n } and that for eachi " { 1, . . . , n} we have 0< #(I i ). Let

" = min
$

!
4 án á($f $! + 1)

, #(I 1), . . . , #(I 1)
%

" (0, + # )

and take any partition P = { J1, . . . , Jm} of [a, b] such that $P$ < " . Let y1, . . . , ym " [a, b]
such that yj " Jj for any j " { 1, . . . , m} and consider the set of indexes

! = { j " { 1, . . . , m} | ' i " { 1, . . . , n} Jj ( I i } .

Note that for any j " ! we have

h(x) & f (yj ) & g(x), ) x " Jj .

Therefore, we obtain that #

Jj

h & f (yj ) á#(Jj ) &
#

Jj

g.

Hence, using thatf & g and that h & f , we get, respectively,
#

Jj

f %f (yj ) á#(Jj ) &
#

Jj

g %
#

Jj

h and f (yj ) á#(Jj ) %
#

Jj

f &
#

Jj

g %
#

Jj

h.

Moreover, since 0& g %h we obtain

!

j " !

&#

Jj

g %
#

Jj

h

'

&
# b

a
g %

# b

a
h &

!
2

.

4
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Therefore
!

j ! !

"
"
"
"
"

#

Jj

f ! f (yj ) á! (Jj )

"
"
"
"
"

"
"
2

On the other hand, for eachj /# !, we have that
"
"
"
"
"

#

Jj

f ! f (yj ) á! (Jj )

"
"
"
"
"

" 2 á $f $" á $P$ "
"

2 án

Let us point out that ! (Jj ) " $ P$ < ! (I i ) for any i # { 1, . . . , n} . Consequently,Jj is covered
by exactly two subintervals of the partition P0. This leads to state that the number of indexes
that donÕt belong to ! is at mostn, and so the proof is complete because we have

!

j /! !

"
"
"
"
"

#

Jj

f ! f (yj ) á! (Jj )

"
"
"
"
"

"
"
2

We are now in position to prove the Monotone Convergence Theorem.

Theorem 13.2. Let { f n} "
n=1 be a sequence of Riemann integrable functions that converges

pointwise to a function f : [a, b] % R. Suppose thatf is also Riemann integrable and that
{ f n} "

n=1 is monotonic, that is, one of the following holds

&x # [a, b], &n # N \ { 0} , f n(x) " f n+1 (x).(13.1)

&x # [a, b], &n # N \ { 0} , f n+1 (x) " f n(x).(13.2)

Then one has

lim
n# + "

# b

a
f n =

# b

a
f.

Proof. Without loss of generality we can assume thatf = 0 and that each f n is nonnegative
and the sequence is decreasing; it is enough to changef n with f ! f n in the Þrst case andf n ! f
in the second one. Here is important the fact thatf n and f are both Riemann integrable. Also,
using the change of variablesx '% x$ a

b$ a we might also assume thata = 0 and b= 1.
First of all we note that since 0" f n+1 " f n we have that

0 " yn+1 " yn, whereyn :=
# 1

0
f n .

Therefore, the sequence of Real numbers{ yn} "
n=1 converges to someL # [0, + ( ). Since we

are in the casef = 0, we must show that L = 0 to conclude.
Let " # (0, + ( ), by the Darboux property, for any n # N \ { 0} there is #n # (0, + ( )

such that for any partition P = { I 1, . . . , I m } of [0, 1] with mesh$P$ < #n and any collection
y1, . . . , ym # [0, 1] such that yk # I k we have that

m!

k=1

"
"
"
"

#

I k

f n ! f n (yk) á! (I k)

"
"
"
" "

"
2n+1

.(13.3)

5
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Furthermore, we deÞne

N (x) := inf
!

n ! N \ { 0} | f n (x) "
!
2

"
, #x ! [0, 1].

By the CousinÕs Lemma applied withr (x) = 1
2á"N (x) there exist a partition P = { I 1, . . . , I m }

and y1 < . . . < y m such that yk ! I k and #(I k) < " N (yk ) for any k ! { 1, . . . , m} . Take n ! N
such that N0 := max{ N (y1), . . . , N (ym)} " n. Hence

0 "
# 1

0
f n =

m$

k=1

#

I k

f n "
m$

k=1

#

I k

f N (yk ) =
N0$

j =1

$

k! J (j )

#

I k

f N (yk ) .

where J (j ) = { k ! { 1, . . . , m} | j = N (yk)} for any j ! { 1, . . . , N0} . Note that someJ (j )
can possibly be the empty set. Also, remark that#(I k) < " j for any k ! J (j ). Therefore, by
(13.3) and the deÞnition ofN (yk) we get

$

k! J (j )

#

I k

f N (yk ) "
$

k! J (j )

f N (yk ) (yk) á#(I k) +
!

2j +1
"

!
2

á

%

&
$

k! J (j )

#(I k) +
1
2j

'

( .

This leads then to

0 "
# 1

0
f n =

!
2

á
N0$

j =1

%

&
$

k! J (j )

#(I k) +
1
2j

'

( "
!
2

á(1 + 1) = !.

Given that ! ! (0, + $ ) is arbitrary, the conclusion follows.

13.3 Functionals and Integral equations

We have considered so far Real-valued functions deÞned on subsets ofR, that is, functions of
the type f : I % R & R. In this section we introduce the idea of function of function, which
we might call functional to make a distinction with respect to Real-valued functions.

We begin by introducing some notation, let us denote byC([a, b]) the set of all Real-valued
continuous functions deÞned on the closed bounded interval [a, b]. We call a functional, denoted
generically byT : C([a, b]) & C([a, b]), to any mapping deÞned onC([a, b]) and whose value
is an element inC([a, b]), that is,

#f ! C([a, b]), ' $ ! C([a, b]) such that T(f ) = $.

The Riemann integral allows us to deÞne in several way a functional onC([a, b]).

Example 13.1. Let f ! C([a, b]), let us consider the functionalT : C([a, b]) & C([a, b])
deÞned via

T(f )(x) =
# x

a
f, #x ! [a, b].

6
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The function T(f ) deÞnes a continuous function; as a matter of fact, Lipschitz continuous
function. Indeed, let us denote! = T(f ), then

! (x) ! ! (y) =
! x

a
f !

! y

a
f =

" #x
y f if y < x

!
#y

x f if x < y
" x, y # [a, b].

Since f # C([a, b]) then, |f | $ %f %! and so

|! (x) ! ! (y)| $ %f %! |x ! y| " x, y # [a, b].

Example 13.2. Let f # C([a, b]) and K : [a, b] & [a, b] ' R be a function such that

1. ( L # [0, + ) ) such that x *' K (x, u) is Lipschitz continuous with constantL for any
u # [a, b] (the same for anyu).

2. u *' K (x, u) is Riemann integrable for anyx # [a, b].

We consider the functional

T(f )(x) =
! b

a
(K (x, á) áf ).

Note that eachT(f )(x) # R, this is due to the fact that for anyx # [a, b] the mapu *' K (x, u)
is Riemann integrable, and thenu *' K (x, u) áf (u) is also Riemann integrable, and so integral
if well deÞned. For sake of simplicity, let! = T(f ) and so

! (x) ! ! (z) =
! b

a
(K (x, á) áf ) !

! b

a
(K (z,á) áf ) =

! b

a
[(K (x, á) ! K (z,á)) áf ]

Remark that

(K (x, u) ! K (y, u)) áf (y) $ | K (x, u) ! K (y, u)| á %f %! $ L á |x ! y| á %f %!

Therefore,
|! (x) ! ! (y)| $ L|x ! y| á %f %! á(b! a).

From where we actually get thatx *' ! (x) is Lipschitz continuous on[a, b].

Since a functional is essentially a function between sets endowed with a norm, we can
also deÞne notions of continuity. For the scope of the exposition, the most important one is
Lipschitz continuity.

DeÞnition 13.2. We say that a functionalT : C([a, b]) ' C([a, b]) is Lipschitz continuous if
there is L # [0, + ) ) such that

%T(f ) ! T(g)%! $ L á %f ! g%!

7
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Example 13.3. Let us pick up the data from Example13.1. Let f, g ! C([a, b]) be given, then
for any x ! [a, b] Þxed but arbitrary we have

|T(f )(x) " T(g)(x)| =

!
!
!
!

" x

a
f "

" x

a
g

!
!
!
! =

!
!
!
!

" x

a
(f " g)

!
!
!
! #

" x

a
|f " g|

Given that |f (y) " g(y)| # $ f " g$! for any y ! [a, x] we get

|T(f )(x) " T(g)(x)| # $ f " g$! á(x " a) # $ f " g$! á(b" a)

Since the right hand side doesnÕt depend onx, we can take supremum and get

$T(f ) " T(g)$! # (b" a) á $f " g$! .

Hence, f %&T(f ) is a Lipschitz continuous functional with Lipschitz constantL = ( b" a).

Example 13.4. Let F : R & R be a Lipschitz continuous function with Lipschitz constant
LF ! (0, + ' ) and let y0 ! R. We consider the functional deÞned onC([a, b]) given by

T(f )(x) = y0 +
" x

a
F ( f, ) f ! C([a, b]).

Note that the Riemann integral ofF ( f is well-deÞned because that function is continuous
thanks to the composition rule for continuous function. Therefore, we see that

|T(f )(x) " T(g)(x)| =

!
!
!
!

" x

a
F ( f "

" x

a
F ( g

!
!
!
! =

!
!
!
!

" x

a
(F ( f " F ( g)

!
!
!
! #

" x

a
|F ( f " F ( g|

The Lipschitz continuity of y %&F (y), implies that

|F ( f (y) " F ( g(y)| = |F (f (y)) " F (g(y)) | # LF á |f (y) " g(y)| # LF á $f " g$! .

Consequently, we get that

|T(f )(x) " T(g)(x)| # (b" a) áL á $f " g$!

So, the functionalf %&T(f ) is Lipschitz continuous with Lipschitz constantLF á(b" a).

13.3.1 Banach Fixed Point Theorem

Since we have introduced the notion of function among a set of functions, we can also introduce
the notion of functional equation, that is, an equation where the unknown is a function. For
example, we would like to Þnd at least af ! C([a, b]) such that

T(f ) = f(13.4)

for some functionalT : C([a, b]) & C([a, b]). Any function f ! C([a, b]) that satisÞes (13.4) is
called aÞxed point of the functional T.

8
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Remark 13.1. The functional exhibited in Example13.4 plays a key role in the theory of
ordinary di!erential equations. Indeed, any solution to an ordinary di!erential equation

f ! = F (f ), f (a) = y0

is by deÞnition a function that satisÞes

f (x) = T(f )(x) = y0 +
! x

a
F ! f, " x # [a, b].

Hence, the existence of solutions to an ordinary di!erential equation can be study by analyzing
the Þxed points of the functionalT.

Fixed point theorems are more di!cult for function deÞned onC([a, b]) than in R, because
for instance in the Þrst set there is no result playing the role of the Intermediate Value Theorem
in R; essentially because not every bounded sequence of continuous functions has a subsequence
that converges uniformly.

To Þnd Þxed point of functional we need to use the completeness of the space of continuous
function. The following is one of the most classical result regarding Þxed points of functional.
It is worth noting that the following theorem provides more information about the Þxed point,
it says that it is unique.

Theorem 13.3. Let T : C([a, b]) $ C([a, b]) be a Lipschitz continuous functional and suppose
that its Lipschitz constantL belongs to(0, 1). Then, there is a unique Þxed point ofT, that is

%!f # C([a, b]), T(f ) = f.

Proof. Let f 1 # C([a, b]) be any function, and deÞne inductively the sequence of functions

f n+1 = T(f n), " n # N \ { 0} .

Then, for any n # N \ { 0, 1} we have

&f n+1 ' f n&" = &T(f n) ' T(f n# 1)&" ( L á &f n ' f n# 1&" ( . . . ( Ln# 1&f 2 ' f 1&"

Let any n, p # N \ { 0} , then

&f n+ p ' f n&" (
n+ p# 1"

k= n

&f k+1 ' f k&" (
n+ p# 1"

k= n

Lk# 1&f 2 ' f 1&" = Ln# 1 á
1 ' Lp+1

1 ' L
á &f 2 ' f 1&"

Thanks to the fact that L # (0, 1) we have that

Ln# 1 á
1 ' Lp+1

1 ' L
$ 0 asn $ + )

and so, it is easy to see that the sequence{ f n} "
n=1 is a Cauchy sequence, and it converges

uniformly to somef # C([a, b]).
Let us see thatf is a Þxed point ofT. Note that for any n # N \ { 0} we have

&T(f ) ' f &" ( & T(f ) ' T(f n)&" + &T(f n) ' f n&" + &f n ' f &"

9
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Thus, using the Lipschitz continuity of T, the deÞnition of f n+1 and the estimate founded
above, we get

! T(f ) " f ! ! # (L + 1) á !f n " f ! ! + Ln" 1! f 2 " f 1! !

Letting n $ + % we Þnally obtain that ! T(f ) " f ! ! = 0 and so, sinceT(f ) and f are both
continuous, we conclude thatT(f ) = f .

The only issue remaining is the uniqueness, which comes from the following observation:
If f & C([a, b]) and g & C([a, b]) are both Þxed point ofT, then

! f " g! ! = ! T(f ) " T(g)! ! # L! f " g! !

But, sinceL & (0, 1) the only option is that ! f " g! ! = 0 and sof = g, because both functions
are continuous on [a, b].

13.4 Exercises

1. Consider the sequence of functions{ f n} !
n=1 deÞned on

!
0, !

4

"
via

f n(x) = sin n(x), x &
#
0,

!
4

$
.

Show that

lim
n# + !

% !
4

0
f n = 0

2. Let { f n} !
n=1 be a sequence of nonnegative Riemann integrable functions on [a, b]. Suppose

that the function f : [a, b] $ R given below is well-deÞned and Riemann integrable

f (x) = lim
n# + !

n&

k=1

f k(x), ' x & [a, b].

Prove that %b

a
f =

!&

k=1

%b

a
f k := lim

n# + !

n&

k=1

%b

a
f k

3. Show that there is a unique continuous functionf : [0, 1] "$ R such that

f (x) =
(

x +
%1

0
(K (x, á) áf ),

whereK (x, u) = exp( " (x + u + 1)) for any x, u & [0, 1].

4. Let K : [0, 1] ) [0, 1] "$ R be a continuous function so that|K (x, u)| < 1 ' x, u & [0, 1].
Prove that there is a unique continuous functionf : [0, 1] "$ R such that that satisÞes

f (x) +
%1

0
(K (x, á) áf ) = exp( x2).

10
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Instructor: Dr. Cristopher HERMOSILLA

Louisiana State University - Spring 2016

Week 14: Special topics on Riemann
integrability

We end the exposition about the Riemann integral studying some classes of functions for which
it is possible to compute their Riemann integral (in some sense) regardless the fact that they
may not be Riemann integrable in the sense we have adopted in this course.

14.1 p-Riemann integrable functions

Recall that if a f : [a, b] ! R is Riemann integrable, then|f | is also Riemann integrable.
Furthermore, since the product of Riemann integrable function is also Riemann integrable, we
can infer that for any p " N, the |f |p is also Riemann integrable.

DeÞnition 14.1. Let p " Q # (0, + $ ). We say that a functionf : [a, b] ! R is p-Riemann
integrable if |f |p is Riemann integrable and

%f %p :=
! " b

a
|f |p

# 1
p

" R.

The value%f %p is called thep-norm of f .

As we have pointed out, any Riemann integrable function is alsop-Riemann integrable
if p " N; this fact is also true if p " Q # (0, + $ ), but their proof is beyond the scope of
these notes. The converse is not true, there arep-Riemann integrable functions that are not
Riemann integrable, for example

f (x) =

$
1 if x " Q # [0, 1]

&1 if x " [0, 1] \ Q

14.1.1 Properties of the p-norms

The role of the p-norms over set of Riemann integrable function can be compared with the
role of the absolute value and the sup-norm overR and C([a, b]), respectively. There are some
properties in common for all the three, but others that are only characteristic of absolute value
and the sup-norm. For example, thep-norm of a Riemann integrable function can equal zero
but, the function not be the constant function zero. However, we know that

' x " R, |x| = 0 ( x = 0 ) ' f " C([a, b]), %f %! = 0 ( f (x) = 0 , ' x " [a, b].

1
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Recall that for any ! ! R we have that

|x + ! áy| " |x| + |! | á |y| #x, y ! R and $f + ! ág$! " $ f $! + |! | á$g$! #f, g ! C([a, b]).

This property means that absolute value and the sup-norm are sublinear overR and
C([a, b]), respectively. A similar inequality holds for thep-norm over the set of Riemann
integrable functions.

Theorem 14.1. Let p ! N\{ 0} and let f : [a, b] % R and g : [a, b] % R be Riemann integrable,
then for any ! ! R, f + ! ág is p-Riemann integrable and

$f + ! ág$p " $ f $p + |! | á$g$p.

The proof of the theorem is based on two preliminary inequalities.

Lemma 14.1 (YoungÕs Inequality). Let p ! N \ { 0, 1} and set q = p
p" 1. Then, for any

a, b! [0, + & ) we have that

a áb "
1
p

áap +
1
q

ábq.

Proof. First of all, if a = 0 or b = 0 then the inequality is trivial, so, let us assume that
a, b! (0, + & ).

Recall that for any p ! N and h ! (' 1, + & ) we have the BernouilliÕs inequality (see
equation (8.8)), that is,

1 + p áh " (1 + h)p.

Let h = 1
p á

!
ap

bq ' 1
"
. Since ap

bq ! (0, + & ) we have that ' 1
p < h and so by the BernouilliÕs

inequality we get that
a

b
q
p

= (1 + p áh)
1
p " 1 + h =

1
p

á
ap

bq
+

1
q

.

The multiplying by bq and using the fact that q ' q
p = 1 we get the desired result.

The other inequality we need is known as the H¬olderÕs inequality.

Lemma 14.2 (H¬olderÕs Inequality). Let p ! N \ { 0, 1} and setq = p
p" 1. Let f : [a, b] % R be

p-Riemann integrable and andg : [a, b] % R be q-Riemann integrable. If f ág is 1-Riemann
integrable then

$f ág$1 " $ f $p á$g$q.

Proof. Note that if $f $p = 0, then |f | = 0 except at a Þnite number of points on [a, b], and
so f ág = 0 except at a Þnite number of points on [a, b]. Hence$f ág$1 = 0 and so the
conclusion would follow. A similar remark holds for the case$g$p = 0. Therefore, without
loss of generality, we assume that$f $p, $g$q ! (0, + & ).

Let x ! [a, b] be Þxed but arbitrary and set

a =
|f (x)|
$f $p

and b=
|g(x)|
$g$q

.

2
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By the YoungÕs inequality we obtain

|f (x)| á |g(x)|
! f ! p á! g! q

"
1
p

á
|f (x)|p

! f ! p
p

+
1
q

á
|g(x)|q

! g! q
q

.

Sincex # [a, b] is arbitrary, by integrating the last inequality we that

! f ág! 1

! f ! p á! g! q
"

1
p á! f ! p

p
á
! b

a
|f |p +

1
qá! g! q

q
á
! b

a
g|q =

1
p

+
1
q

= 1.

From where the conclusion follows.

Remark 14.1. The H¬olderÕs inequality is also true for the casep = 1, but in this case! g! q is
replace with, ! g! ! . This is a direct consequence of the fact that

|f (x) ág(x)| " |f (x)| á! g! ! .

We are now in position to prove Theorem14.1.

Proof of Theorem14.1. Sincef and g are Riemann integrable, so they aref + ! ág and |f + ! ág|.
In particular, for any k # { 2, . . . , p} , the function |f + ! ág|k is Riemann integrable.

Note that (p$ 1)áq = p, thus |f + ! ág|p" 1 is Riemann integrable, and so it is alsoq-Riemann
integrable. By the H¬olderÕs inequality, since|f |á |f + ! ág|p" 1 and |g|á |f + ! ág|p" 1 are Riemann
integrable and nonnegative, we get that

! |f | á |f + ! ág|p" 1! 1 " ! f ! p á! f + ! ág!
p
q and ! |g| á |f + ! ág|p" 1! 1 " ! g! p á! f + ! ág!

p
q .

Now, since

|f (x) + ! ág(x)|p " (|f (x) + |! | á |g(x)|) á |f (x) + ! ág(x)|p" 1, %x # [a, b],

integrating this inequality and using the Þrst inequality we get that

! f + ! ág! p
p " (! f ! p + |! | á! g! p) á(! f + ! ág!

p
q ).

Using Þnally the fact that p $ p
q = 1 the proof is complete.

For a given Riemann integrable function, the value ofp-norm times a given factor (depend-
ing only on p and [a, b]) increases withp, eventually reaching the sup-norm off .

Theorem 14.2. Let f : [a, b] & R be Riemann integrable, then

! f ! 1 " (b$ a)
p! 1

p á! f ! p " (b$ a)
p+ h ! 1

p+ h á! f ! p+ h " (b$ a) á! f ! ! , %p, h # N \ { 0} .

Furthermore, if f is continuous, then

lim
p# + !

! f ! p = ! f ! ! .

3
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Proof. For the Þrst inequality, we use the H¬olderÕs inequality withg(x) = 1 for any x ! [a, b].
Furthermore, note that " f " p

p = " f p" 1, hence using the H¬olderÕs inequalityf p and g as before
the second inequality follows. The last inequality is simply a consequence of the deÞnition of
the sup-norm.

On the other hand, for anyp ! N \ { 0} let us setxp = ( b# a)
p! 1

p á" f " p. By the preceding
part, the sequence generated by this numbers is increasing and bounded above by (b# a)á" f " ! .
Therefore,{ xp} !

p=1 converges to someL ! R, and furthermore,L $ (b# a) á" f " ! . Note that

{ (b# a)
p! 1

p } !
p=1 converges to (b# a) as p % + & . So, the sequence generated by

" f " p =
1

(b# a)
p! 1

p

áxp

also converges, and its limit is less than or equal to" f " ! . Note that up to this point we
havenÕt used the fact thatf is continuous.

Now, sincef is assume to be continuous on [a, b] there is øx ! [a, b] such that " f " ! = |f (øx)|.
Furthermore, by continuity of |f |, for any ! ! (0, " f " ! ) and there is" ! (0, + & ) such that

0 $ " f " ! # ! < |f (x)|, ' x ! (øx # ", øx + ") ( [a, b].

Let I = (øx # ", øx + ") ( [a, b] and note that #(I ) ! (0, + & ). Then,

(" f " ! # ! )p á#(I ) $
!

I
|f |p $ " f " p

p.

This yields then to (" f " ! # ! ) á#(I )
1
p $ " f " p. So, letting p % + & we get that #(I )

1
p % 1,

from where we obtain
" f " ! # ! $ lim

p" + !
" f " p

and the conclusion follows because! ! (0, " f " ! ) is arbitrary and positive.

Remark 14.2. The assumption thatf is continuous on Theorem14.2 is important, otherwise
the limit, which always exists, can be strictly less than" f " ! . For instance, consider

f (x) =

"
0 if x ! [0, 1) ) (1, 2]

1 if x = 1

Clearly, " f " p = 0 for any p ! N \ { 0} but " f " ! = 1.

14.2 Improper integrals

Recall that to deÞne the Riemann integral we have restrict ourselves tobounded functions
deÞned onclosed and bounded intervals.

We now show that is it possible to extend the notion of Riemann integral to functions that
donÕt satisfy some of the boundedness assumptions described above.

4
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Before going further, let us deÞne the lateral limit of a function. Letr ! (0, + " ) and
consider a functionF : (0, r ) # R. We say that L ! R is the limit from above of F at 0 if

$! ! (0, + " ), %" ! (0, r ), $h ! R, (0 < h < " & |F (h) ' L | < ! .

In this case we denote the limit from above by

lim
h! 0+

F (h)

DeÞnition 14.2. Let a, b! R with a < b, and f : (a, b) # R be a given function. We say that
f is integrable if:

¥ for any h ! (0, b" a
2 ), f is Riemann integrable on[a + h, b' h].

¥ the following limit exists

lim
h! 0+

! b" h

a+ h
f

Under these circumstances we say that the improper integral converges and we denote its value
in the same way as the Riemann integral, that is,

! b

a
f = lim

h! 0+

! b" h

a+ h
f

We now evoke some results concerning previous calculus courses:
Let # ! Q ( (0, + " ) and considerf ! (x) = 1

(1" x)! deÞned on (0, 1). We know that for any
h ! (0, 1

2) we have

! 1" h

h
f ! =

"
#

$

ln(1 ' h) ' ln(h) if # = 1
1

1 ' #

%
1

(1 ' h)! " 1
'

1
h! " 1

&
otherwise

Sinceh! " 1 # 0 if and only if # ! (1, + " ) and 1
h! ! 1 # 0 if and only if # ! (0, 1). We get that

the improper integral of f ! converges if and only if# ! (0, 1). In any other case, the limit
doesnÕt exist.

Let us now present a criterion for the convergence of improper integrals.

Theorem 14.3. Let f : (a, b) # R and g : (a, b) # R be two given functions, such that

¥ for any h ! (0, b" a
2 ), f and g are Riemann integrable on[a + h, b' h].

¥ there is r ! (0, b' a) for which 0 ) f (x) ) g(x) for any x ! (a, a+ r ) * (b' r, b).

If the improper integral of g converges, then so does the improper integral off .

Proof. Note that, thanks to the Þrst assumption, for anyh ! (0, r ) we have that

! b" h

a+ h
f =

! a+ r

a+ h
f +

! b" r

a+ r
f +

! b" h

b" r
f

5
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Let F1 : (0, r ) ! R and F2 : (0, r ) ! R be given by

F1(h) =
! a+ r

a+ h
f and F2(h) =

! b! h

b! r
f, " h # (0, r ).

The fact that f is non negative on (a, a+ r )$ (b%r, b) implies that both functions are decreasing.
Similarly, we deÞneG1 : (0, r ) ! R and G2 : (0, r ) ! R via

G1(h) =
! a+ r

a+ h
g and G2(h) =

! b! h

b! r
g, " h # (0, r ).

This function are as well decreasing and by the second assumption we have thatF1 & G1 and
F2 & G2 on (a, a+ r ) $ (b%r, b). Moreover, since the improper integral ofg converges we have
that the limit from above of G1 and G2 at 0 exist, this leads then to

F1(h) & G1(h) & lim
h" 0+

G1(h) and F2(h) & G2(h) & lim
h" 0+

G2(h), " h # (0, r ).

Hence, sup{ F1(h) | h # (0, r )} and sup{ F2(h) | h # (0, r )} are well deÞned Real numbers.
Combining this with the fact that F1 and F2 are decreasing functions, we get that

lim
h" 0+

F1(h) = sup{ F1(h) | h # (0, r )} and lim
h" 0+

F2(h) = sup{ F2(h) | h # (0, r )} , " h # (0, r ).

14.3 Exercises

1. Consider the sequence of continuous functions{ f n} #
n=1 given by

f n(x) :=

"
xn if x # [0, 1]

1 if x # (1, 2]

Prove that { f n} #
n=1 satisÞes the Cauchy criterion for the 1-norm, that is,

" ! # (0, + ' ), ( N # N \ { 0} , " n, p # N, N & n =) * f n+ p %f n*1 & ! .

Does{ f n} #
n=1 converges uniformly to some continuous function? Determine whether or

not the set of continuous function is complete if we replace* á*# with * á*1.

Hint: Show that ! 2

0
|f n+ p %f n | &

! 1

0
f n =

1
n + 1

" n, p # N

2. Consider the sequence of continuous functions{ f n} #
n=1 deÞned via

f n(x) =

"
1 %nx if 0 & x & 1

n

0 if 1
n < x & 1

Show that the sequence of Real numbers{ * f n*2} #
n=1 converge to 0. What about the

sequences{ * f n*1} #
n=1 and { * f n*# } #

n=1 ? Do they converges to to 0?
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3. Let { f n} !
n=1 be a sequence of Riemann integrable functions on [a, b] and let f : [a, b] ! R

be another Riemann integrable function. Suppose that for somep " N \ { 0} we have
that

#f n $ f #p ! 0 asn ! + %.

Prove that for any k " { 1, . . . , p} we have that#f n $ f #k ! 0 asn ! + %.

4. Suppose thatf : (a, b) ! R is uniformly continuous on (a, b). Prove that its improper
integral converges.

5. Let f : (a, b) ! R and g : (a, b) ! R be two given non negative functions, such that

¥ for any h " (0, b" a
2 ), f and g are Riemann integrable on [a + h, b$ h].

¥ the following limits from above exists and are positive Real number

lim
h# 0+

f (a + h)
g(a + h)

and lim
h# 0+

f (b$ h)
g(b$ h)

Prove that the improper integral of f converges if and only if the improper integral ofg
does it too.

Hint: Use Theorem14.3.
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